803 research outputs found

    The Relative Hydrodynamic Resistance of Various Types of Rivet Heads from Tests of Planning Surfaces, Special Report

    Get PDF
    The Committee was requested to investigate the effect of various types of rivet heads on hydrodynamic resistance. The proposal was made to obtain the resistance of the various types of rivets by tests of planing surfaces on which the full size rivets would be arranged. The testing methods, results and conclusions are given

    Cooper pairing and single particle properties of trapped Fermi gases

    Full text link
    We calculate the elementary excitations and pairing of a trapped atomic Fermi gas in the superfluid phase. The level spectra and pairing gaps undergo several transitions as the strength of the interactions between and the number of atoms are varied. For weak interactions, the Cooper pairs are formed between particles residing in the same harmonic oscillator shell. In this regime, the nature of the paired state is shown to depend critically on the position of the chemical potential relative to the harmonic oscillator shells and on the size of the mean field. For stronger interactions, we find a region where pairing occur between time-reversed harmonic oscillator states in different shells also.Comment: Slightly revised version: Mistakes in equation references in figures corrected. Accepted for Phys. Rev.

    Bright matter wave solitons in Bose-Einstein condensates

    No full text
    We review recent experimental and theoretical work on the creation of bright matter wave solitons in Bose–Einstein condensates. In two recent experiments, solitons are formed from Bose–Einstein condensates of 7Li by utilizing a Feshbach resonance to switch from repulsive to attractive interactions. The solitons are made to propagate in a one-dimensional potential formed by a focused laser beam. For repulsive interactions, the wavepacket undergoes dispersivewavepacket spreading, while for attractive interactions, localized solitons are formed. In our experiment, a multi-soliton train containing up to ten solitons is observed to propagate without spreading for a duration of 2 s. Adjacent solitons are found to interact repulsively, in agreement with a calculation based on the nonlinear Schr¨odinger equation assuming that the soliton train is formed with an alternating phase structure. The origin of this phase structure is not entirely clear

    Boson induced s-wave pairing in dilute boson-fermion mixtures

    Full text link
    We show that in dilute boson-fermion mixtures with fermions in two internal states, even when the bare fermion-fermion interaction is repulsive, the exchange of density fluctuations of the Bose condensate may lead to an effective fermion-fermion attraction, and thus to a Cooper instability in the s-wave channel. We give an analytical method to derive the associated TcT_c in the limit where the phonon branch of the Bogoliubov excitation spectrum of the bosons is important. We find a TcT_c of the same order as for a pure Fermi gas with bare attraction.Comment: 12 pages, no figure

    Phonon spectrum and dynamical stability of a quantum degenerate Bose-Fermi mixture

    Full text link
    We calculate the phonon excitation spectrum in a zero-temperature boson-fermion mixture. We show how the sound velocity changes due to the boson-fermion interaction and we determine the dynamical stability regime of a homogeneous mixture. We identify a resonant phonon-exchange interaction between the fermions as the physical mechanism leading to the instability.Comment: 4 pages, 3 figure

    Two-species magneto-optical trap with 40K and 87Rb

    Full text link
    We trap and cool a gas composed of 40K and 87Rb, using a two-species magneto-optical trap (MOT). This trap represents the first step towards cooling the Bose-Fermi mixture to quantum degeneracy. Laser light for the MOT is derived from laser diodes and amplified with a single high power semiconductor amplifier chip. The four-color laser system is described, and the single-species and two-species MOTs are characterized. Atom numbers of 1x10^7 40K and 2x10^9 87Rb are trapped in the two-species MOT. Observation of trap loss due to collisions between species is presented and future prospects for the experiment are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review

    Effective s- and p-Wave Contact Interactions in Trapped Degenerate Fermi Gases

    Full text link
    The structure and stability of dilute degenerate Fermi gases trapped in an external potential is discussed with special emphasis on the influence of s- and p-wave interactions. In a first step an Effective Contact Interaction for all partial waves is derived, which reproduces the energy spectrum of the full potential within a mean-field model space. Using the s- and p-wave part the energy density of the multi-component Fermi gas is calculated in Thomas-Fermi approximation. On this basis the stability of the one- and two-component Fermi gas against mean-field induced collapse is investigated. Explicit stability conditions in terms of density and total particle number are given. For the single-component system attractive p-wave interactions limit the density of the gas. In the two-component case a subtle competition of s- and p-wave interactions occurs and gives rise to a rich variety of phenomena. A repulsive p-wave part, for example, can stabilize a two-component system that would otherwise collapse due to an attractive s-wave interaction. It is concluded that the p-wave interaction may have important influence on the structure of degenerate Fermi gases and should not be discarded from the outset.Comment: 18 pages, 11 figures (using RevTEX4
    corecore