57 research outputs found

    Climate Process Team on internal wave–driven ocean mixing

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 98 (2017): 2429-2454, doi:10.1175/BAMS-D-16-0030.1.Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatiotemporal patterns of mixing are largely driven by the geography of generation, propagation, and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last 5 years and under the auspices of U.S. Climate Variability and Predictability Program (CLIVAR), a National Science Foundation (NSF)- and National Oceanic and Atmospheric Administration (NOAA)-supported Climate Process Team has been engaged in developing, implementing, and testing dynamics-based parameterizations for internal wave–driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here, we review recent progress, describe the tools developed, and discuss future directions.We are grateful to U.S. CLIVAR for their leadership in instigating and facilitating the Climate Process Team program. We are indebted to NSF and NOAA for sponsoring the CPT series.2018-06-0

    Climate Process Team on Internal-Wave Driven Ocean Mixing

    Get PDF
    Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean, and consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Climate models have been shown to be very sensitive not only to the overall level but to the detailed distribution of mixing; sub-grid-scale parameterizations based on accurate physical processes will allow model forecasts to evolve with a changing climate. Spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and destruction of internal waves, which are thought to supply much of the power for turbulent mixing. Over the last five years and under the auspices of US CLIVAR, a NSF and NOAA supported Climate Process Team has been engaged in developing, implementing and testing dynamics-base parameterizations for internal-wave driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here we review recent progress, describe the tools developed, and discuss future directions

    Beyond equilibrium climate sensitivity

    Get PDF
    ISSN:1752-0908ISSN:1752-089

    The Sensitivity of Future Ocean Oxygen to Changes in Ocean Circulation

    Get PDF
    A decline in global ocean oxygen concentrations has been observed over the twentieth century and is predicted to continue under future climate change. We use a unique modeling framework to understand how the perturbed ocean circulation may influence the rate of ocean deoxygenation in response to a doubling of atmospheric CO2 and associated global warming. These simulations suggest that much of the oxygen decline under warming is due to changes in ocean mixing and O2 solubility. However, in our model, the large‐scale ocean circulation response to CO2 doubling slows the pace of future oxygen loss by 20%. Oxygen concentration changes are most sensitive to circulation perturbations in the Southern Ocean. A small stabilizing effect on oxygen arises from the reduction of export productivity and associated respiration in the ocean interior. A slowdown of the Atlantic Meridional Overturning Circulation increases the residence time of the deep Atlantic Ocean but does not cause a major oxygen decline at the time of CO2 doubling, because respiration is slow at these depths. The simulations show that the decrease in O2 solubility associated with ocean warming is greater than the realized decrease in preformed O2, particularly at high latitudes, where circulation changes reduce the proportion of undersaturated waters sinking into the ocean interior. Finally, in the tropical Pacific oxygen minimum zone, a predicted weakening of the Walker Circulation slows the regional upwelling of nutrients and the associated export productivity and respiration, preventing the intensification of hypoxia there

    Forward volume and surface magnetostatic modes in an yttrium iron garnet film for out-of-plane magnetic fields: Theory and experiment

    No full text
    We present experimental and theoretical results on the propagation of magnetostatic spin waves in a film of yttrium iron garnet (YIG) for out-of-plane magnetic fields for which propagation in opposite directions is nonreciprocal in the presence of a metal layer. The plane studied is defined by the film normal n and n × k where k is the wave vector of the mode. Spin waves in this setting are classified as forward volume waves or surface waves and display non-reciprocity in the presence of an adjacent metal layer except for when H//n. The measurements are carried out in a transmission geometry, and a microwave mixer is used to measure the change of phase, and with it the evolution of wavevector, of the arriving spin wave with external magnetic field

    Igniting the Fire Within

    No full text

    Large-scale ocean circulation-cloud interactions reduce the pace of transient climate change

    No full text
    Changes to the large‐scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2‐forced perturbations to the large‐scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models
    corecore