72 research outputs found

    Proteomics : A Tool to Study Platelet Function

    Get PDF
    Acknowledgments: Authors acknowledge Laxmikanth Kollipara for the critical review and Julia Lill for support with figures preparation. The Figure 2 was created in Biorender.Peer reviewedPublisher PD

    Decline in the number of patients with meningitis in German hospitals during the COVID-19 pandemic

    Get PDF
    BACKGROUND AND OBJECTIVES: In 2020, a wide range of hygiene measures was implemented to mitigate infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In consequence, pulmonary infections due to other respiratory pathogens also decreased. Here, we evaluated the number of bacterial and viral meningitis and encephalitis cases during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: In a multicentre retrospective analysis of data from January 2016 until December 2020, numbers of patients diagnosed with bacterial meningitis and other types of CNS infections (such as viral meningitis and encephalitis) at 26 German hospitals were studied. Furthermore, the number of common meningitis-preceding ear-nose-throat infections (sinusitis, mastoiditis and otitis media) was evaluated. RESULTS: Compared to the previous years, the total number of patients diagnosed with pneumococcal meningitis was reduced (n = 64 patients/year in 2020 vs. n = 87 to 120 patients/year between 2016 and 2019, all p < 0.05). Additionally, the total number of patients diagnosed with otolaryngological infections was significantly lower (n = 1181 patients/year in 2020 vs. n = 1525 to 1754 patients/year between 2016 and 2019, all p < 0.001). We also observed a decline in viral meningitis and especially enterovirus meningitis (n = 25 patients/year in 2020 vs. n = 97 to 181 patients/year between 2016 and 2019, all p < 0.001). DISCUSSION: This multicentre retrospective analysis demonstrates a decline in the number of patients treated for viral and pneumococcal meningitis as well as otolaryngological infections in 2020 compared to previous years. Since the latter often precedes pneumococcal meningitis, this may point to the significance of the direct spread of pneumococci from an otolaryngological focus such as mastoiditis to the brain as one important pathophysiological route in the development of pneumococcal meningitis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00415-022-11034-w

    Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia.

    No full text
    The systemic response to decreasing oxygen levels is hypoxic vasodilation. While this mechanism has been known for more than a century, the underlying cellular events have remained incompletely understood. Nitrite signaling is critically involved in vessel relaxation under hypoxia. This can be attributed to the presence of myoglobin in the vessel wall together with other potential nitrite reductases, which generate nitric oxide, one of the most potent vasodilatory signaling molecules. Questions remain relating to the precise concentration of nitrite and the exact dose-response relations between nitrite and myoglobin under hypoxia. It is furthermore unclear whether regulatory mechanisms exist which balance this interaction. Nitrite tissue levels were similar across all species investigated. We then investigated the exact fractional myoglobin desaturation in an ex vivo approach when gassing with 1% oxygen. Within a short time frame myoglobin desaturated to 58±12%. Given that myoglobin significantly contributes to nitrite reduction under hypoxia, dose-response experiments using physiological to pharmacological nitrite concentrations were conducted. Along all concentrations, abrogation of myoglobin in mice impaired vasodilation. As reactive oxygen species may counteract the vasodilatory response, we used superoxide dismutase and its mimic tempol as well as catalase and ebselen to reduce the levels of reactive oxygen species during hypoxic vasodilation. Incubation of tempol in conjunction with catalase alone and catalase/ebselen increased the vasodilatory response to nitrite. Our study shows that modest hypoxia leads to a significant nitrite-dependent vessel relaxation. This requires the presence of vascular myoglobin for both physiological and pharmacological nitrite levels. Reactive oxygen species, in turn, modulate this vasodilation response

    A practical approach to remote ischemic preconditioning and ischemic preconditioning against myocardial ischemia/reperfusion injury

    No full text
    Although urgently needed in clinical practice, a cardioprotective therapeutic approach against myocardial ischemia/reperfusion injury remains to be established. Remote ischemic preconditioning (rIPC) and ischemic preconditioning (IPC) represent promising tools comprising three entities: the generation of a protective signal, the transfer of the signal to the target organ, and the response to the transferred signal resulting in cardioprotection. However, in light of recent scientific advances, many controversies arise regarding the efficacy of the underlying signaling. We here show methods for the generation of the signaling cascade by rIPC as well as IPC in a mouse model for in vivo myocardial ischemia/reperfusion injury using highly reproducible approaches. This is accomplished by taking advantage of easily applicable preconditioning strategies compatible with the clinical setting. We describe methods for using laser Doppler perfusion imaging to monitor the cessation and recovery of perfusion in real time. The effects of preconditioning on cardiac function can also be assessed using ultrasound or magnetic resonance imaging approaches. On a cellular level, we confirm how tissue injury can be monitored using histological assessment of infarct size in conjunction with immunohistochemistry to assess both aspects in a single specimen. Finally, we outline, how the rIPC-associated signaling can be transferred to the target cell via conservation of the signal in the humoral (blood) compartment. This compilation of experimental protocols including a conditioning regimen comparable to the clinical setting should proof useful to both beginners and experts in the field of myocardial infarction, supplying information for the detailed procedures as well as troubleshooting guides

    Mediastinalerkrankungen

    No full text

    Nitrite and nitrate levels in mouse tissue.

    No full text
    <p>Aortic tissue of NMRI wild-types, myoglobin (Mb) deficient mice, C57BL/6 wild-types and endothelial nitric oxide synthase (eNOS) knockout mice was analyzed for (A) nitrite and (B) nitrate levels with no significant difference between the species as a prerequisite for dose-response experiments (n = 5–6, means±s.d.).</p

    Dose-dependency for nitrite-induced hypoxic vasodilation in the presence and absence of myoglobin (Mb).

    No full text
    <p>(A) Experimental schema. After equilibration, normoxic gassing was either continued or changed to hypoxia (1% O<sub>2</sub>). Isolated aortic rings of <i>Mb<sup>+/+</sup></i> and <i>Mb<sup>−/−</sup></i> mice were then pre-constricted using phenylephrine (Phe) and subsequently challenged with cumulating doses of nitrite from physiological to pharmacological levels. Under normoxia, nitrite-vasodilation response were identical in both mouse types (B) leading to similar EC<sub>50</sub> levels (C). On the contrary, under hypoxia, nitrite-induced vasodilation was significantly impaired in <i>Mb<sup>−/−</sup></i> (D) with significantly higher resulting EC<sub>50</sub> levels (E). All values are means±s.e.m.</p
    corecore