1,435 research outputs found
Ground state magnetic dipole moment of 35K
The ground state magnetic moment of 35K has been measured using the technique
of nuclear magnetic resonance on beta-emitting nuclei. The short-lived 35K
nuclei were produced following the reaction of a 36Ar primary beam of energy
150 MeV/nucleon incident on a Be target. The spin polarization of the 35K
nuclei produced at 2 degrees relative to the normal primary beam axis was
confirmed. Together with the mirror nucleus 35S, the measurement represents the
heaviest T = 3/2 mirror pair for which the spin expectation value has been
obtained. A linear behavior of gp vs. gn has been demonstrated for the T = 3/2
known mirror moments and the slope and intercept are consistent with the
previous analysis of T = 1/2 mirror pairs.Comment: 14 pages, 5 figure
Propfan test assessment testbed aircraft stability and control/performance 1/9-scale wind tunnel tests
One-ninth scale wind tunnel model tests of the Propfan Test Assessment (PTA) aircraft were performed in three different NASA facilities. Wing and propfan nacelle static pressures, model forces and moments, and flow field at the propfan plane were measured in these tests. Tests started in June 1985 and were completed in January 1987. These data were needed to assure PTA safety of flight, predict PTA performance, and validate analytical codes that will be used to predict flow fields in which the propfan will operate
Nuclear Magnetic Moment of the 57Cu Ground State
The nuclear magnetic moment of the ground state of 57Cu has been measured to
be 2.00 +/- 0.05 nuclear magnetons (nm) using the beta-NMR technique. Together
with the known magnetic moment of the mirror partner 57Ni, the spin extraction
value was extracted as -0.78 +/- 0.13. This is the heaviest isospin T=1/2
mirror pair above the 40Ca region, for which both ground state magnetic moments
have been determined. Shell model calculations in full fp shell giving
mu(57Cu)~2.4 nm and ~0.5 imply significant shell breaking at 56Ni
with the neutron number N=28.Comment: 4 pages, 3 figures, accepted in PR
Emissions from a HGV Using Used Cooking Oil as a Fuel under Real World Driving Conditions
To maximize CO2 reduction, refined straight used cooking oils were used as a fuel in Heavy Goods Vehicles (HGVs) in this research. The fuel is called C2G Ultra Biofuel (C2G: Convert to Green Ltd) and is a fully renewable fuel made as a diesel replacement from processed used cooking oil, used directly in diesel engines specifically modified for this purpose. This is part of a large demonstration project involving ten 44-tonne trucks using C2G Ultra Biofuel as a fuel to partially replace standard diesel fuels. A dual fuel tank containing both diesel and C2G Ultra Biofuel and an on-board fuel blending system-Bioltec system was installed on each vehicle, which is able to heat the C2G Ultra Biofuel and automatically determine the required blending ratio of diesel and C2G Ultra Biofuel according to fuel temperature and engine load. The engine was started with diesel and then switched to C2G Ultra Biofuel under appropriate conditions. Exhaust emissions were measured using PEMS (Portable Emission Measurement Systems) on one of the trucks under real world driving conditions. Comparisons of emissions between neat diesel mode and blended fuel mode were made. The results show that C2G Ultra Biofuel can reduce particulate matter (PM) and CO emissions significantly compared to the use of pure diesel
Half-life and spin of 60Mn^g
A value of 0.28 +/- 0.02 s has been deduced for the half-life of the ground
state of 60Mn, in sharp contrast to the previously adopted value of 51 +/- 6 s.
Access to the low-spin 60Mn ground state was accomplished via beta decay of the
0+ 60Cr parent nuclide. New, low-energy states in 60Mn have been identified
from beta-delayed gamma-ray spectroscopy. The new, shorter half-life of 60Mn^g
is not suggestive of isospin forbidden beta decay, and new spin and parity
assignments of 1+ and 4+ have been adopted for the ground and isomeric
beta-decaying states, respectively, of 60Mn.Comment: 13 pages, 5 figures, Accepted for publication in Phys. Rev.
Proton Drip-Line Calculations and the Rp-process
One-proton and two-proton separation energies are calculated for proton-rich
nuclei in the region . The method is based on Skyrme Hartree-Fock
calculations of Coulomb displacement energies of mirror nuclei in combination
with the experimental masses of the neutron-rich nuclei. The implications for
the proton drip line and the astrophysical rp-process are discussed. This is
done within the framework of a detailed analysis of the sensitivity of rp
process calculations in type I X-ray burst models on nuclear masses. We find
that the remaining mass uncertainties, in particular for some nuclei with
, still lead to large uncertainties in calculations of X-ray burst light
curves. Further experimental or theoretical improvements of nuclear mass data
are necessary before observed X-ray burst light curves can be used to obtain
quantitative constraints on ignition conditions and neutron star properties. We
identify a list of nuclei for which improved mass data would be most important.Comment: 20 pages, 9 figures, 2 table
Shell structure underlying the evolution of quadrupole collectivity in S-38 and S-40 probed by transient-field g-factor measurements on fast radioactive beams
The shell structure underlying shape changes in neutron-rich nuclei between
N=20 and N=28 has been investigated by a novel application of the transient
field technique to measure the first-excited state g factors in S-38 and S-40
produced as fast radioactive beams. Details of the new methodology are
presented. In both S-38 and S-40 there is a fine balance between the proton and
neutron contributions to the magnetic moments. Shell model calculations which
describe the level schemes and quadrupole properties of these nuclei also give
a satisfactory explanation of the g factors. In S-38 the g factor is extremely
sensitive to the occupation of the neutron p3/2 orbit above the N=28 shell gap
as occupation of this orbit strongly affects the proton configuration. The g
factor of deformed S-40 does not resemble that of a conventional collective
nucleus because spin contributions are more important than usual.Comment: 10 pages, 36 figures, accepted for publication in Physical Review
Probing shell structure and shape changes in neutron-rich sulfur isotopes through transient-field g factor measurements on fast radioactive beams of 38S and 40S
The shell structure underlying shape changes in neutron-rich nuclei near N=28
has been investigated by a novel application of the transient field technique
to measure the first-excited state g factors in 38S and 40S produced as fast
radioactive beams. There is a fine balance between proton and neutron
contributions to the magnetic moments in both nuclei. The g factor of deformed
40S does not resemble that of a conventional collective nucleus because spin
contributions are more important than usual.Comment: 10 pages, 6 figures, accepted in PR
- …
