82 research outputs found
Numerical Reconstruction of Ejector Rocket Experimental Tests
Air ejector rocket systems, typical of combined cycle engines for space propulsion applications, have been studied within the ESA Future European Space Transportation Investigations Program. The description and validationof the computational fluid dynamics (CFD) algorithm that has been tuned to simulate the behavior of these systems, and the numerical rebuilding of the ejector rocket experimental tests that were carried out at TNO in The Netherlands are given. The computational developments being presented target the problem of turbulent mixing layer simulation, which is one of the leading phenomena that govern flow behavior inside an ejector rocket. Comparison between experimental and CFD data is given for two validation test cases: a two-dimensional turbulent mixing layer and an axysimmetric ejector in cold flow. Then, the numerical rebuilding of the ejector rocket experimental tests is presented, and the results are discussed with regard to the comparison between numerical and experimental data
Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cells secretome?
Introduction: The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. Methods: In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. Results: The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Conclusions: Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications. © 2015 Teixeira et al.Portuguese Foundation for Science and Technology (FCT) (Ciência 2007
program and IF Development Grant (AJS); and pre-doctoral fellowships to
FGT (SFRH/69637/ 2010) and SIA (SFRH/BD/81495/2011); Canada Research
Chairs (LAB) and a SSE Postdoctoral Fellowship (KMP); The National Mass
Spectrometry Network (RNEM) (REDE/1506/REM/2005); co-funded by Programa
Operacional Regional do Norte (ON.2 – O Novo Norte), ao abrigo do Quadro de
Referência Estratégico Nacional (QREN), através do Fundo Europeu de
Desenvolvimento Regional (FEDER).info:eu-repo/semantics/publishedVersio
Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior
The female Aedes aegypti salivary gland plays a pivotal role in bloodmeal acquisition and reproduction, and thereby dengue virus (DENV) transmission. It produces numerous immune factors, as well as immune-modulatory, vasodilatory, and anti-coagulant molecules that facilitate blood-feeding. To assess the impact of DENV infection on salivary gland physiology and function, we performed a comparative genome-wide microarray analysis of the naïve and DENV infection-responsive A. aegypti salivary gland transcriptomes. DENV infection resulted in the regulation of 147 transcripts that represented a variety of functional classes, including several that are essential for virus transmission, such as immunity, blood-feeding, and host-seeking. RNAi-mediated gene silencing of three DENV infection-responsive genes - a cathepsin B, a putative cystatin, and a hypothetical ankyrin repeat-containing protein - significantly modulated DENV replication in the salivary gland. Furthermore, silencing of two DENV infection-responsive odorant-binding protein genes (OBPs) resulted in an overall compromise in blood acquisition from a single host by increasing the time for initiation of probing and the probing time before a successful bloodmeal. We also show that DENV established an extensive infection in the mosquito's main olfactory organs, the antennae, which resulted in changes of the transcript abundance of key host-seeking genes. DENV infection, however, did not significantly impact probing initiation or probing times in our laboratory infection system. Here we show for the first time that the mosquito salivary gland mounts responses to suppress DENV which, in turn, modulates the expression of chemosensory-related genes that regulate feeding behavior. These reciprocal interactions may have the potential to affect DENV transmission between humans
Scalable and Media Aware Adaptive Video Streaming over Wireless Networks
This paper proposes an advanced video streaming system based on scalable video coding in order to optimize resource utilization in wireless networks with retransmission mechanisms at radio protocol level. The key component of this system is a packet scheduling algorithm which operates on the different substreams of a main scalable video stream and which is implemented in a so-called media aware network element. The concerned type of transport channel is a dedicated channel subject to parameters (bitrate, loss rate) variations on the long run. Moreover, we propose a combined scalability approach in which common temporal and SNR scalability features can be used jointly with a partitioning of the image into regions of interest. Simulation results show that our approach provides substantial quality gain compared to classical packet transmission methods and they demonstrate how ROI coding combined with SNR scalability allows to improve again the visual quality.</p
Adaptive video streaming with long term feedbacks
This paper proposes a video streaming system optimizing resource utilization when the media server only disposes of long term feedbacks from the client. Based on a partial knowledge of the network, we developed a scheduling algorithm that exploits the scalable video coding (SVC) properties to estimate packets importance and that takes into account packet delay dependencies to better anticipate congestion situations. Compared to more conventional streaming systems, experimental results show that our approach allows to better face network condition degradation like bandwidth reduction or packet error rate increase. ©2009 IEEE
Mutations L163P and R190C in NKX2‐5 Confer More Stability to the Protein's Binding to DNA
A study of the prevalence of gastroenteritis among infants age 0 to 1 year of phase II Area CDC II Bagong Bayan, Dasmariñas, Cavite
Treatment of 001 ostial bifurcated lesions with a second generation of placlitaxel eluting balloon: 6 months outcomes of a multicenter registry
- …
