260 research outputs found

    Encoding a Qubit into a Cavity Mode in Circuit-QED using Phase Estimation

    Full text link
    Gottesman, Kitaev and Preskill have formulated a way of encoding a qubit into an oscillator such that the qubit is protected against small shifts (translations) in phase space. The idea underlying this encoding is that error processes of low rate can be expanded into small shift errors. The qubit space is defined as an eigenspace of two mutually commuting displacement operators SpS_p and SqS_q which act as large shifts/translations in phase space. We propose and analyze the approximate creation of these qubit states by coupling the oscillator to a sequence of ancilla qubits. This preparation of the states uses the idea of phase estimation where the phase of the displacement operator, say SpS_p, is approximately determined. We consider several possible forms of phase estimation. We analyze the performance of repeated and adapative phase estimation as the simplest and experimentally most viable schemes given a realistic upper-limit on the number of photons in the oscillator. We propose a detailed physical implementation of this protocol using the dispersive coupling between a transmon ancilla qubit and a cavity mode in circuit-QED. We provide an estimate that in a current experimental set-up one can prepare a good code state from a squeezed vacuum state using 88 rounds of adapative phase estimation, lasting in total about 4μ4 \mu sec., with 94%94\% (heralded) chance of success.Comment: 24 pages, 15 figures. Some minor improvements to text and figures. Some of the numerical data has been replaced by more accurate simulations. The improved simulation shows that the code performs better than originally anticipate

    Strong Monogamy of Bipartite and Genuine Multipartite Entanglement: The Gaussian Case

    Full text link
    We demonstrate the existence of general constraints on distributed quantum correlations, which impose a trade-off on bipartite and multipartite entanglement at once. For all N-mode Gaussian states under permutation invariance, we establish exactly a monogamy inequality, stronger than the traditional one, that by recursion defines a proper measure of genuine N-partite entanglement. Strong monogamy holds as well for subsystems of arbitrary size, and the emerging multipartite entanglement measure is found to be scale invariant. We unveil its operational connection with the optimal fidelity of continuous variable teleportation networks.Comment: 4 pages, 2 figures. Final version, published in PR

    Simulating quantum computation by contracting tensor networks

    Full text link
    The treewidth of a graph is a useful combinatorial measure of how close the graph is to a tree. We prove that a quantum circuit with TT gates whose underlying graph has treewidth dd can be simulated deterministically in TO(1)exp[O(d)]T^{O(1)}\exp[O(d)] time, which, in particular, is polynomial in TT if d=O(logT)d=O(\log T). Among many implications, we show efficient simulations for log-depth circuits whose gates apply to nearby qubits only, a natural constraint satisfied by most physical implementations. We also show that one-way quantum computation of Raussendorf and Briegel (Physical Review Letters, 86:5188--5191, 2001), a universal quantum computation scheme with promising physical implementations, can be efficiently simulated by a randomized algorithm if its quantum resource is derived from a small-treewidth graph.Comment: 7 figure

    Dispersive Qubit Measurement by Interferometry with Parametric Amplifiers

    Get PDF
    We perform a detailed analysis of how an amplified interferometer can be used to enhance the quality of a dispersive qubit measurement, such as one performed on a superconducting transmon qubit, using homodyne detection on an amplified microwave signal. Our modeling makes a realistic assessment of what is possible in current circuit-QED experiments; in particular, we take into account the frequency-dependence of the qubit-induced phase shift for short microwaves pulses. We compare the possible signal-to-noise ratios obtainable with (single-mode) SU(1,1) interferometers with the current coherent measurement and find a considerable reduction in measurement error probability in an experimentally-accessible range of parameters

    Quantum operations that cannot be implemented using a small mixed environment

    Get PDF
    To implement any quantum operation (a.k.a. ``superoperator'' or ``CP map'') on a d-dimensional quantum system, it is enough to apply a suitable overall unitary transformation to the system and a d^2-dimensional environment which is initialized in a fixed pure state. It has been suggested that a d-dimensional environment might be enough if we could initialize the environment in a mixed state of our choosing. In this note we show with elementary means that certain explicit quantum operations cannot be realized in this way. Our counterexamples map some pure states to pure states, giving strong and easily manageable conditions on the overall unitary transformation. Everything works in the more general setting of quantum operations from d-dimensional to d'-dimensional spaces, so we place our counterexamples within this more general framework.Comment: LATEX, 8 page

    From Majorana Fermions to Topological Order

    Get PDF
    We consider a system consisting of a 2D network of links between Majorana fermions on superconducting islands. We show that the fermionic Hamiltonian modeling this system is topologically-ordered in a region of parameter space. In particular we show that Kitaev's toric code emerges in fourth-order perturbation theory. By using a Jordan-Wigner transformation we can map the model onto a family of signed 2D Ising models in a transverse field where the signs (FM or AFM) are determined by additional gauge bits. Our mapping allows an understanding of the non-perturbative regime and the phase transition to a non-topological phase. We discuss the physics behind a possible implementation of this model and argue how it can be used for topological quantum computation by adiabatic changes in the Hamiltonian.Comment: 4+4 pages, 5 figures. v2 has a new reference and a few new comments. In v3: yet another new reference and Supplementary Material is renamed Appendix. In v4: several typos are corrected, to appear in Phys. Rev. Let

    Roads towards fault-tolerant universal quantum computation

    Get PDF
    A practical quantum computer must not merely store information, but also process it. To prevent errors introduced by noise from multiplying and spreading, a fault-tolerant computational architecture is required. Current experiments are taking the first steps toward noise-resilient logical qubits. But to convert these quantum devices from memories to processors, it is necessary to specify how a universal set of gates is performed on them. The leading proposals for doing so, such as magic-state distillation and colour-code techniques, have high resource demands. Alternative schemes, such as those that use high-dimensional quantum codes in a modular architecture, have potential benefits, but need to be explored further

    Detecting entanglement using a double quantum dot turnstile

    Full text link
    We propose a scheme based on using the singlet ground state of an electron spin pair in a double quantum dot nanostructure as a suitable set-up for detecting entanglement between electron spins via the measurement of an optimal entanglement witness. Using time-dependent gate voltages and magnetic fields the entangled spins are separated and coherently rotated in the quantum dots and subsequently detected at spin-polarized quantum point contacts. We analyze the coherent time evolution of the entangled pair and show that by counting coincidences in the four exits an entanglement test can be done. This set-up is close to present-day experimental possibilities and can be used to produce pairs of entangled electrons ``on demand''.Comment: 5 pages, 2 figures - published versio
    corecore