974 research outputs found

    Gas and liquid-fuelled HVOF spraying of Ni50Cr coating: microstructure and high temperature oxidation

    Get PDF
    Ni50Cr thermally sprayed coatings are widely used for high temperature oxidation and corrosion in thermal power plants. In this study, a commercially available gas atomised Ni50Cr powder was sprayed onto a power plant alloy (ASME P92) using both gas and liquid fuelled high velocity oxy-fuel (HVOF) thermal spray. Microstructures of the two coatings were examined using SEM-EDX, XRD, oxygen content analysis and mercury intrusion porosimeter. The gas fuelled coating had higher levels of oxygen content and porosity. Shorter term air oxidation tests (4 h) of the free-standing deposits in a thermogravimetric analyser (TGA) and longer term air oxidation tests (100 h) of the coated substrates were performed at 700 °C. The kinetics of oxidation and the oxidation products were characterized in detail in SEM/EDX and XRD. In both samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of the coatings along with a small amount of NiO and NiCr2O4. Rietveld analysis was performed on the XRD data to quantify the phase composition of the oxides on both Ni50Cr coatings and their evolution with exposure time

    Role of oxides and porosity on high temperature oxidation of liquid fuelled HVOF thermal sprayed Ni50Cr coatings

    Get PDF
    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid fuelled high velocity oxy-fuel (HVOF) thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry (MIP), scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX) and X-ray Diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyser (TGA) at 700 ℃ were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM / EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr₂O₃ was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high temperature oxidation performance in this study

    The Redshift Distribution of the TOUGH Survey

    Full text link
    We present the redshift results from a Very Large Telescope program aimed at optimizing the legacy value of the Swift mission: to characterize a homogeneous, X-ray selected, sample of 69 GRB host galaxies. 19 new redshifts have been secured, resulting in a 83% (57/69) redshift completion, making the survey the most comprehensive in terms of redshift completeness of any sample to the full Swift depth, available to date. We present the cumulative redshift distribution and derive a conservative, yet small, associated uncertainty. We constrain the fraction of Swift GRBs at high redshift to a maximum of 10% (5%) for z > 6 (z > 7). The mean redshift of the host sample is assessed to be > 2.2. Using this more complete sample, we confirm previous findings that the GRB rate at high redshift (z > 3) appears to be in excess of predictions based on assumptions that it should follow conventional determinations of the star formation history of the universe, combined with an estimate of its likely metallicity dependence. This suggests that either star formation at high redshifts has been significantly underestimated, for example due to a dominant contribution from faint, undetected galaxies, or that GRB production is enhanced in the conditions of early star formation, beyond those usually ascribed to lower metallicity.Comment: 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: paper 34 in eConf Proceedings C130414

    Swift J1112.2-8238: A Candidate Relativistic Tidal Disruption Flare

    Get PDF
    We present observations of Swift J1112.2-8238, and identify it as a candidate relativistic tidal disruption flare (rTDF). The outburst was first detected by Swift/BAT in June 2011 as an unknown, long-lived (order of days) γ\gamma-ray transient source. We show that its position is consistent with the nucleus of a faint galaxy for which we establish a likely redshift of z=0.89z=0.89 based on a single emission line that we interpret as the blended [OII]λ3727\lambda3727 doublet. At this redshift, the peak X/γ\gamma-ray luminosity exceeded 104710^{47} ergs s−1^{-1}, while a spatially coincident optical transient source had i′∼22i^{\prime} \sim 22 (Mg∼−21.4_g \sim -21.4 at z=0.89z=0.89) during early observations, ∼20\sim 20 days after the Swift trigger. These properties place Swift J1112.2-8238 in a very similar region of parameter space to the two previously identified members of this class, Swift J1644+57 and Swift J2058+0516. As with those events the high-energy emission shows evidence for variability over the first few days, while late time observations, almost 3 years post-outburst, demonstrate that it has now switched off. Swift J1112.2-8238 brings the total number of such events observed by Swift to three, interestingly all detected by Swift over a ∼\sim3 month period (<3%<3\% of its total lifetime as of March 2015). While this suggests the possibility that further examples may be uncovered by detailed searches of the BAT archives, the lack of any prime candidates in the years since 2011 means these events are undoubtedly rare.Comment: 11 pages, 5 figures, accepted for publication by MNRA
    • …
    corecore