9,212 research outputs found
Three-dimensional magnetostatic models of the large-scale corona
A special class of magnetostatic equilibria is described, which are mathematically simple and yet sufficiently versatile so as to fit any arbitrary normal magnetic flux prescribed at the photosphere. With these solutions, the corona can be modeled with precisely the same mathematically simple procedure as has previously been done with potential fields. The magnetostatic model predicts, in addition to the coronal magnetic field, the three dimensional coronal density which can be compared with coronagraph observations
An investigation of the plastic fracture of high strength steels
Three generally recognized stages of plastic fracture in high strength steels are considered in detail. These stages consist of void initiation, void growth, and void coalescence. A brief review of the existing literature on plastic fracture is included along with an outline of the experimental approach used in the investigation
Age Dating of a High-Redshift QSO B1422+231 at Z=3.62 and its Cosmological Implications
The observed Fe II(UV+optical)/Mg II lambda lambda 2796,2804 flux ratio from
a gravitationally lensed quasar B1422+231 at z=3.62 is interpreted in terms of
detailed modeling of photoionization and chemical enrichment in the broad-line
region (BLR) of the host galaxy. The delayed iron enrichment by Type Ia
supernovae is used as a cosmic clock. Our standard model, which matches the Fe
II/Mg II ratio, requires the age of 1.5 Gyr for B1422+231 with a lower bound of
1.3 Gyr, which exceeds the expansion age of the Einstein-de Sitter Omega_0=1
universe at a redshift of 3.62 for any value of the Hubble constant in the
currently accepted range, H_0=60-80 km,s^{-1},Mpc^{-1}. This problem of an age
discrepancy at z=3.62 can be unraveled in a low-density Omega_0<0.2 universe,
either with or without a cosmological constant, depending on the allowable
redshift range of galaxy formation. However, whether the cosmological constant
is a required option in modern cosmology awaits a thorough understanding of
line transfer processes in the BLRs.Comment: 7 pages including 3 figures, to appear in ApJ Letter
Corrections to deuterium hyperfine structure due to deuteron excitations
We consider the corrections to deuterium hyperfine structure originating from
the two-photon exchange between electron and deuteron, with the deuteron
excitations in the intermediate states. In particular, the motion of the two
intermediate nucleons as a whole is taken into account. The problem is solved
in the zero-range approximation. The result is in good agreement with the
experimental value of the deuterium hyperfine splitting.Comment: 7 pages, LaTe
An ontology for ISO software engineering standards: 1) Creating the infrastructure
Software engineering standards developed under the auspices of ISO/IEC JTC1's SC7 have been identified as employing terms whose definitions vary significantly between standards. This led to a request in 2012 to investigate the creation of an ontological infrastructure that aims to be a single coherent underpinning for all SC7 standards, present and future. Here, we develop that necessary infrastructure prior to its adoption by SC7 and its implementation (likely 2014). The proposal described here requires, firstly, the identification of a single comprehensive set of definitions, the definitional elements ontology (DEO). For the scope of an individual standard, only a subset of these definitional elements will be needed. Once configured, this definitional subset creates a configured definitional ontology or CDO. Both the DEO and the CDO are essentially foundational ontologies from which a domain-specific ontology known as a SDO or standard domain ontology can be created. Consequently, all such SDOs are conformant to a CDO and hence to the single DEO thus ensuring that all standards use the same ontological base. Standards developed in this fashion will therefore be not only of a higher quality but also, importantly, interoperable. © 2013 Elsevier B.V. All rights reserved
The NASA Spitzer Space Telescope
The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991–2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/
Testing non-linear force-free coronal magnetic field extrapolations with the Titov-Demoulin equilibrium
CONTEXT: As the coronal magnetic field can usually not be measured directly,
it has to be extrapolated from photospheric measurements into the corona. AIMS:
We test the quality of a non-linear force-free coronal magnetic field
extrapolation code with the help of a known analytical solution. METHODS: The
non-linear force-free equations are numerically solved with the help of an
optimization principle. The method minimizes an integral over the force-free
and solenoidal condition. As boundary condition we use either the magnetic
field components on all six sides of the computational box in Case I or only on
the bottom boundary in Case II. We check the quality of the reconstruction by
computing how well force-freeness and divergence-freeness are fulfilled and by
comparing the numerical solution with the analytical solution. The comparison
is done with magnetic field line plots and several quantitative measures, like
the vector correlation, Cauchy Schwarz, normalized vector error, mean vector
error and magnetic energy. RESULTS: For Case I the reconstructed magnetic field
shows good agreement with the original magnetic field topology, whereas in Case
II there are considerable deviations from the exact solution. This is
corroborated by the quantitative measures, which are significantly better for
Case I. CONCLUSIONS: Despite the strong nonlinearity of the considered
force-free equilibrium, the optimization method of extrapolation is able to
reconstruct it; however, the quality of reconstruction depends significantly on
the consistency of the input data, which is given only if the known solution is
provided also at the lateral and top boundaries, and on the presence or absence
of flux concentrations near the boundaries of the magnetogram.Comment: 6 pages, 2 figures, Research Not
Formation of Primordial Protostars
The evolution of collapsing metal free protostellar clouds is investigated
for various masses and initial conditions.
We perform hydrodynamical calculations for spherically symmetric clouds
taking account of radiative transfer of the molecular hydrogen lines and the
continuum, as well as of chemistry of the molecular hydrogen.
The collapse is found to proceed almost self-similarly like Larson-Penston
similarity solution.
In the course of the collapse, efficient three-body processes transform
atomic hydrogen in an inner region of \sim 1 M_{\sun} entirely into molecular
form.
However, hydrogen in the outer part remains totally atomic although there is
an intervening transitional layer of several solar masses, where hydrogen is in
partially molecular form.
No opaque transient core is formed although clouds become optically thick to
H collision-induced absorption continuum, since H dissociation
follows successively.
When the central part of the cloud reaches stellar densities (), a very small hydrostatic core (\sim
5 \times 10^{-3} M_{\sun}) is formed and subsequently grows in mass as the
ambient gas accretes onto it.
The mass accretion rate is estimated to be 3.7 \times 10^{-2} M_{\sun}
{\rm yr^{-1}} (M_{\ast}/M_{\sun})^{-0.37}, where is instantaneous
mass of the central core, by using a similarity solution which reproduces the
evolution of the cloud before the core formation.Comment: 20 pages, 5 Postscript figures, uses AAS LaTe
Gate-controlled Guiding of Electrons in Graphene
Ballistic semiconductor structures have allowed the realization of
optics-like phenomena in electronics, including magnetic focusing and lensing.
An extension that appears unique to graphene is to use both n and p carrier
types to create electronic analogs of optical devices having both positive and
negative indices of refraction. Here, we use gate-controlled density with both
p and n carrier types to demonstrate the analog of the fiber-optic guiding in
graphene. Two basic effects are investigated: (1) bipolar p-n junction guiding,
based on the principle of angle-selective transmission though the graphene p-n
interface, and (2) unipolar fiber-optic guiding, using total internal
reflection controlled by carrier density. Modulation of guiding efficiency
through gating is demonstrated and compared to numerical simulations, which
indicates that interface roughness limits guiding performance, with
few-nanometer effective roughness extracted. The development of p-n and
fiber-optic guiding in graphene may lead to electrically reconfigurable wiring
in high-mobility devices.Comment: supplementary materal at
http://marcuslab.harvard.edu/papers/OG_SI.pd
Linking and causality in globally hyperbolic spacetimes
The linking number is defined if link components are zero homologous.
Our affine linking invariant generalizes to the case of linked
submanifolds with arbitrary homology classes. We apply to the study of
causality in Lorentz manifolds. Let be a spacelike Cauchy surface in a
globally hyperbolic spacetime . The spherical cotangent bundle
is identified with the space of all null geodesics in
Hence the set of null geodesics passing through a point gives an
embedded -sphere in called the sky of Low observed
that if the link is nontrivial, then are causally
related. This motivated the problem (communicated by Penrose) on the Arnold's
1998 problem list to apply link theory to the study of causality. The spheres
are isotopic to fibers of They are nonzero
homologous and is undefined when is closed, while is well defined. Moreover, if is not an
odd-dimensional rational homology sphere. We give a formula for the increment
of \alk under passages through Arnold dangerous tangencies. If is
such that takes values in and is conformal to having all
the timelike sectional curvatures nonnegative, then are causally
related if and only if . We show that in
nonrefocussing are causally unrelated iff can be deformed
to a pair of -fibers of by an isotopy through skies. Low
showed that if (\ss, g) is refocussing, then is compact. We show that the
universal cover of is also compact.Comment: We added: Theorem 11.5 saying that a Cauchy surface in a refocussing
space time has finite pi_1; changed Theorem 7.5 to be in terms of conformal
classes of Lorentz metrics and did a few more changes. 45 pages, 3 figures. A
part of the paper (several results of sections 4,5,6,9,10) is an extension
and development of our work math.GT/0207219 in the context of Lorentzian
geometry. The results of sections 7,8,11,12 and Appendix B are ne
- …