9,730 research outputs found

    Predicting operator workload during system design

    Get PDF
    A workload prediction methodology was developed in response to the need to measure workloads associated with operation of advanced aircraft. The application of the methodology will involve: (1) conducting mission/task analyses of critical mission segments and assigning estimates of workload for the sensory, cognitive, and psychomotor workload components of each task identified; (2) developing computer-based workload prediction models using the task analysis data; and (3) exercising the computer models to produce predictions of crew workload under varying automation and/or crew configurations. Critical issues include reliability and validity of workload predictors and selection of appropriate criterion measures

    Characterisation of the Etching Quality in Micro-Electro-Mechanical Systems by Thermal Transient Methodology

    Get PDF
    Our paper presents a non-destructive thermal transient measurement method that is able to reveal differences even in the micron size range of MEMS structures. Devices of the same design can have differences in their sacrificial layers as consequence of the differences in their manufacturing processes e.g. different etching times. We have made simulations examining how the etching quality reflects in the thermal behaviour of devices. These simulations predicted change in the thermal behaviour of MEMS structures having differences in their sacrificial layers. The theory was tested with measurements of similar MEMS devices prepared with different etching times. In the measurements we used the T3Ster thermal transient tester equipment. The results show that deviations in the devices, as consequence of the different etching times, result in different temperature elevations and manifest also as shift in time in the relevant temperature transient curves.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Photometry of SN 2002bo with template image subtraction

    Full text link
    VRI photometry of the type Ia supernova 2002bo is presented. This SN exploded in a dusty region of the host galaxy NGC 3190, thus, subtraction of a template frame was necessary to obtain reliable photometry. We used a template frame of NGC 3190 taken during the course of our galaxy imaging project, fortunately, just a few days before SN 2002bo was discovered. The aim of this project is to collect template frames of nearby galaxies that are potential hosts of bright SNe. Subtraction of pre-SN images helped us to exclude the background light contamination of the host galaxy. The maximum occurred at JD 2452346, with maximal V brightness of 13.58. MLCS analysis led to T0(B)=JD 2452346.1 pm 0.8 (fiducial B-maximum), E(B-V)=0.24 pm 0.02, mu0=32.46 pm 0.06, Delta=-0.14 pm 0.04. E(B-V)=0.24(2) indicates a significant extinction in the host galaxy as the galactic reddening is negligible toward NGC 3190. The accepted value of Delta indicates that SN 2002bo was a slightly overluminous SN by about 0.14 relative to fiducial SN Type Ia. The distance turned out to be 31.0 pm 3 Mpc. In addition, the heavily obscured SN 2002cv was also detected on the I frame taken on JD 2452434 (June 8, 2002), and a variable star is found in the field, very close to the host galaxy.Comment: accepted by Astronomy and Astrophysic

    Three-electron anisotropic quantum dots in variable magnetic fields: exact results for excitation spectra, spin structures, and entanglement

    Full text link
    Exact-diagonalization calculations for N=3 electrons in anisotropic quantum dots, covering a broad range of confinement anisotropies and strength of inter-electron repulsion, are presented for zero and low magnetic fields. The excitation spectra are analyzed as a function of the strength of the magnetic field and for increasing quantum-dot anisotropy. Analysis of the intrinsic structure of the many-body wave functions through spin-resolved two-point correlations reveals that the electrons tend to localize forming Wigner molecules. For certain ranges of dot parameters (mainly at strong anisotropy), the Wigner molecules acquire a linear geometry, and the associated wave functions with a spin projection S_z=1/2 are similar to the representative class of strongly entangled states referred to as W-states. For other ranges of parameters (mainly at intermediate anisotropy), the Wigner molecules exhibit a more complex structure consisting of two mirror isosceles triangles. This latter structure can be viewed as an embryonic unit of a zig-zag Wigner crystal in quantum wires. The degree of entanglement in three-electron quantum dots can be quantified through the use of the von Neumann entropy.Comment: To appear in Physical Review B. REVTEX4. 13 pages with 16 color figures. To download a copy with higher-quality figures, go to publication #78 in http://www.prism.gatech.edu/~ph274cy

    Dynamics of Population on the Verge of Extinction

    Get PDF
    Theoretical considerations suggest that extinction in dispersal-limited populations is necessarily a threshold-like process that is analogous to a critical phase transition in physics. We use this analogy to find robust, common features in the dynamics of extinctions, and suggest early warning signals which may indicate that a population is endangered. As the critical threshold of extinction is approached, the population spontaneously fragments into discrete subpopulations and, consequently, density regulation fails. The population size declines and its spatial variance diverges according to scaling laws. Therefore, we can make robust predictions exactly in the range where prognosis is vital, on the verge of extinction

    Adaptive finite element analysis based on p-convergence

    Get PDF
    The results of numerical experiments are presented in which a posteriori estimators of error in strain energy were examined on the basis of a typical problem in linear elastic fracture mechanics. Two estimators were found to give close upper and lower bounds for the strain energy error. The potential significance of this is that the same estimators may provide a suitable basis for adaptive redistribution of the degrees of freedom in finite element models

    Multi-domain service orchestration over networks and clouds: a unified approach

    Get PDF
    End-to-end service delivery often includes transparently inserted Network Functions (NFs) in the path. Flexible service chaining will require dynamic instantiation of both NFs and traffic forwarding overlays. Virtualization techniques in compute and networking, like cloud and Software Defined Networking (SDN), promise such flexibility for service providers. However, patching together existing cloud and network control mechanisms necessarily puts one over the above, e.g., OpenDaylight under an OpenStack controller. We designed and implemented a joint cloud and network resource virtualization and programming API. In this demonstration, we show that our abstraction is capable for flexible service chaining control over any technology domain
    corecore