17 research outputs found

    Pumps used as turbines power recovery, energy efficiency, CFD analysis

    No full text
    As the global demand for energy grows, numerous studies in the field of energy efficiency are stimulated, and one of them is certainly the use of pumps in turbine operating mode. In order to reduce time necessary to determine pump characteristic in turbine operating mode problem was studied by computational fluid dynamics approach. The paper describes various problems faced during modeling (pump and turbine mode) and the approaches used to resolve the problems. Since in the majority of applications, the turbine is a pump running in reverse, many attempts have been made to predict the turbine performance from the known pump performance, but only for best efficiency point. This approach does not provide reliable data for the design of the system with maximum energy efficiency and does not allow the determination of the head for a wide range of flow rates. This paper presents an example of centrifugal norm pump operating in both (pump and turbine) regime and comparison of experimentally obtained results and computational fluid dynamics simulations. [Projekat Ministarstva nauke Republike Srbije, br. TR33040: Revitalization of existing and designing new micro and mini hydropower plants (from 100 to 1000 kW) in the territory of South and Southeast Serbia

    Performance of low-pressure fans operating with hot air

    No full text
    Performance characteristics of fans are generally provided for the normal temperature and pressure conditions (tI = 20°C, pI = 101.325 kPa, ρ I = 1.2 kg/m3). Very often, fans operate in different air conditions, occasionally at different air temperatures. In these cases, equations obtained by the law of similarity are usually used for recalculation of the fan operating parameters. Increasing the inlet air temperature causes a decrease in the characteristic of Reynolds number, and may lead to efficiency lowering of the fan. There are also some empirical formulas for recalculation of fan efficiency, when operating at different air temperatures. In this paper, the common way for obtaining fan performance for different operating conditions (air temperature changing) is presented. The results, obtained by recalculation of fan parameters using a law of similarity, are compared to numerical simulation results of the axial-flow fan operating with different air temperatures. These results are compared with results obtained by some recommended empirical formulas, as well. This paperwork is limited to low-pressure and mid-pressure fans, which represents the majority of all fans used in practice, for different purposes

    Identification of the co-existence of low total organic carbon contents and low pH values in agricultural soil in north-central Europe using hot spot analysis based on GEMAS project data

    No full text
    Total organic carbon (TOC)contents in agricultural soil are presently receiving increased attention, not only because of their relationship to soil fertility, but also due to the sequestration of organic carbon in soil to reduce carbon dioxide emissions. In this research, the spatial patterns of TOC and its relationship with pH at the European scale were studied using hot spot analysis based on the agricultural soil results of the Geochemical Mapping of Agricultural Soil (GEMAS)project. The hot and cold spot maps revealed the overall spatial patterns showing a negative correlation between TOC contents and pH values in European agricultural soil. High TOC contents accompanying low pH values in the north-eastern part of Europe (e.g., Fennoscandia), and low TOC with high pH values in the southern part (e.g., Spain, Italy, Balkan countries). A special feature of co-existence of comparatively low TOC contents and low pH values in north-central Europe was also identified on hot and cold spot analysis maps. It has been found that these patterns are strongly related to the high concentration of SiO 2 (quartz)in the coarse-textured glacial sediments in north-central Europe. The hot spot analysis was effective, therefore, in highlighting the spatial patterns of TOC in European agricultural soil and helpful to identify hidden patterns

    GEMAS: Spatial analysis of the Ni distribution on a continental-scale using digital image processing techniques on European agricultural soil data

    No full text
    This study demonstrates the use of digital image processing for the spatial pattern recognition and characterisation of Ni concentrations in topsoil in Europe. Moving average smoothing was applied to the TIN-interpolated grid model to suppress small irregularities. Digital image processing was applied then to the grid. Several NE-SW, E-W and NW-SE oriented features were revealed at the continental scale. The dominant NE-SW linear features follow the Variscan and Alpine orogenies. The highest variability zones are in the Alps and the Balkans where mafic and ultramafic rocks outcrop. A single major E-W oriented north-facing feature runs along the last continental glaciation zone. This zone also coincides with a series of local maxima in Ni concentration along the glaciofluvial deposits. The NW-SE elongated features are located in the Pyrenees, northern Italy, Hellas and Fennoscandia. This study demonstrates the advantages of digital image processing analysis in identifying and characterising spatial geochemical patterns unseen before on conventional colour-surface maps

    GEMAS: Cadmium distribution and its sources in agricultural and grazing land soil of Europe â\u80\u94 Original data versus clr-transformed data

    No full text
    Over 4000 agricultural and grazing land soil samples were collected for the â\u80\u9cGeochemical Mapping of Agricultural and Grazing Land Soil of Europeâ\u80\u9d (GEMAS) project carried out by the EuroGeoSurveys Geochemistry Expert Group. The samples were collected in 33 European countries, covering 5.6 million km2at a density of 1 sample site per 2500 km2. All samples were analysed by ICP-MS following an aqua regia extraction. The European median Cd concentration is 0.182 mg/kg in agricultural soil and 0.197 mg/kg in grazing land soil (including eastern Ukraine). The Cd map demonstrates the existence of two different geochemical background regimes in northern and southern Europe, separated by the southern limit of the Quaternary glaciation. Cadmium shows two times higher background concentrations in the older and more weathered southern European soil than in northern European soil. The spatial distribution patterns of Cd in the collected soil samples are mainly governed by geology (parent material and mineralisation), as well as weathering, soil formation and climate since the last glaciation period. Locally, in several areas, the natural anomaly pattern is overprinted by anthropogenic emissions from former mining, ore processing and related metal industries. Some Cd anomalies can be attributed to urbanisation and the use of fertilisers. A comparison of the raw data Cd concentration map with its clr-transformed counterpart and selected single element ratio maps demonstrates that substantial additional information about sources and processes governing the distribution of Cd in agricultural soil at the European scale can be obtained. Results of a PCA, carried out following the classical approach (standardised) versus a PCA based on the statistically acceptable approach, using clr-transformed data, are quite comparable

    GEMAS: Cadmium distribution and its sources in agricultural and grazing land soil of Europe - Original data versus clr-transformed data

    No full text
    Over 4000 agricultural and grazing land soil samples were collected for the “Geochemical Mapping of Agricultural and Grazing Land Soil of Europe” (GEMAS) project carried out by the EuroGeoSurveys Geochemistry Expert Group. The samples were collected in 33 European countries, covering 5.6 million km² at a density of 1 sample site per 2500 km². All samples were analysed by ICP-MS following an aqua regia extraction. The European median Cd concentration is 0.182 mg/kg in agricultural soil and 0.197 mg/kg in grazing land soil (including eastern Ukraine). The Cd map demonstrates the existence of two different geochemical background regimes in northern and southern Europe, separated by the southern limit of the Quaternary glaciation. Cadmium shows two times higher background concentrations in the older and more weathered southern European soil than in northern European soil

    Use of GEMAS data for risk assessment of cadmium in European agricultural and grazing land soil under the REACH Regulation

    No full text
    Over 4000 soil samples were collected for the “Geochemical Mapping of Agricultural and Grazing Land Soil of Europe” (GEMAS) project carried out by the EuroGeoSurveys Geochemistry Expert Group. Cadmium concentrations are reported for the <2 mm fraction of soil samples from regularly ploughed fields (agricultural soil, Ap, 0–20 cm, N = 2218) and grazing land soil (Gr, 0–10 cm, N = 2127). The samples were collected in 33 European countries, covering 5.6 million km2 at a sample density of 1 sample each per 2500 km2 and were analysed in an aqua regia extraction followed by an ICP-MS finish. The median Cd value is 0.181 mg/kg for the Ap and 0.202 mg/kg for the Gr soil samples. The data allow a directly comparable country-specific regional exposure and risk characterisation for all EU countries covered. Direct risks of Cd for terrestrial organisms are only predicted for a few isolated sample sites: 2.3% of the Ap and 4.5% of the Gr sites, respectively

    GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil

    No full text
    The GEMAS (geochemical mapping of agricultural soil) project collected 2108 Ap horizon soil samples from regularly ploughed fields in 33 European countries, covering 5.6 million km2. The &lt;2 mm fraction of these samples was analysed for 53 elements by ICP-MS and ICP-AES, following a HNO3/HCl/H2O (modified aqua regia) digestion. Results are used here to establish the geochemical background variation and threshold values, derived statistically from the data set, in order to identify unusually high element concentrations for these elements in the Ap samples. Potentially toxic elements (PTEs), namely Ag, B, As, Ba, Bi, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, Sn, U, V and Zn, and emerging ‘high-tech’ critical elements (HTCEs), i.e., lanthanides (e.g., Ce, La), Be, Ga, Ge, In, Li and Tl, are of particular interest. For the latter, neither geochemical background nor threshold at the European scale has been established before. Large differences in the spatial distribution of many elements are observed between northern and southern Europe. It was thus necessary to establish three different sets of geochemical threshold values, one for the whole of Europe, a second for northern and a third for southern Europe. These values were then compared to existing soil guideline values for (eco)toxicological effects of these elements, as defined by various European authorities. The regional sample distribution with concentrations above the threshold values is studied, based on the GEMAS data set, following different methods of determination. Occasionally local contamination sources (e.g., cities, metal smelters, power plants, agriculture) can be identified. No indications could be detected at the continental scale for a significant impact of diffuse contamination on the regional distribution of element concentrations in the European agricultural soil samples. At this European scale, the variation in the natural background concentration of all investigated elements in the agricultural soil samples is much larger than any anthropogenic impact

    GEMAS: CNS concentrations and C/N ratios in European agricultural soil

    No full text
    A reliable overview of measured concentrations of TC, TN and TS, TOC/TN ratios, and their regional distribution patterns in agricultural soil at the continental scale and based on measured data has been missing â\u80\u93 despite much previous work on local and the European scales. Detection and mapping of natural (ambient) background element concentrations and variability in Europe was the focus of this work. While total C and S data had been presented in the GEMAS atlas already, this work delivers more precise (lower limit of determination) and fully quantitative data, and for the first time high-quality TN data. Samples were collected from the uppermost 20 cm of ploughed soil (Aphorizon) at 2108 sites with an even sampling density of one site per 2500 km2for one individual land-use class (agricultural) across Europe (33 countries). Laboratory-independent quality control from sampling to analysis guaranteed very good data reliability and accuracy. Total carbon concentrations ranged from 0.37 to 46.3 wt% (median: 2.20 wt%) and TOC from 0.40 to 46.0 wt% (median: 1.80 wt%). Total nitrogen ranged from 0.018 to 2.64 wt% (median: 0.169 wt%) and TS from 0.008 to 9.74 wt% (median: 0.034 wt%), all with large variations in most countries. The TOC/TN ratios ranged from 1.8 to 252 (median: 10.1), with the largest variation in Spain and the smallest in some eastern European countries. Distinct and repetitive patterns emerge at the European scale, reflecting mostly geogenic and longer-term climatic influence responsible for the spatial distribution of TC, TN and TS. Different processes become visible at the continental scale when examining TC, TN and TS concentrations in agricultural soil Europe-wide. This facilitates large-scale land-use management and allows specific areas (subregional to local) to be identified that may require more detailed research

    GEMAS: Cobalt, Cr, Cu and Ni distribution in agricultural and grazing land soil of Europe

    No full text
    In the framework of the GEMAS project, 2211 samples of agricultural soil (Ap, 0–20 cm, regularly ploughed fields), and 2118 samples fromland under permanent grass cover (Gr, 0–10 cm, grazing land soil)were collected across almost the whole European continent, at a density of 1 sample site/2500 km2, in accordance with a common sampling protocol. Among many other elements, the concentrations of Co, Cr, Cu and Ni in European soil were determined by ICP-MS after a hot aqua extraction, and WD-XRFS analytical methods, and their spatial distribution patterns generated by means of a GIS software. The presence of mafic and ultramafic rocks, ophiolite complexes and mineralisation, is widespread across the European continent, and seems to explain most of the variability of the elements studied in this paper. A large belt, north of the last glaciation maximum limit, is generally dominated by lower concentrations compared with central European and Mediterranean areas and to some areas in Northern Europe where higher Co, Cr, Cu and Ni values also occur. The application of the guideline value set for Cu and Ni by the EU Directive 86/278/EEC to the Ap soil samples of the GEMAS data set highlighted that at the continental scale the use of a unique reference interval is a tool of limited effectiveness; the lithological variation, occurring across a whole continent, generates changes in the geochemistry of soil, which cannot be accommodated by using a single reference interval even if it is very wide. The GEMAS data set should form the sound basis to set at the European scale the geochemical background reference intervals, at least, for regions sharing common lithological settings and a common geological history
    corecore