215 research outputs found
GEOS-20 m cable boom mechanism
The GEOS cable boom mechanism allows the controlled deployment of a 20 m long cable in a centrifugal force field. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface
Optical and Near Infrared Study of the Cepheus E outflow, a very low excitation object
We present images and spectra of the Cepheus E (Cep E) region at both optical
and infrared wavelengths. Only the brightest region of the southern lobe of the
Cep E outflow reveals optical emission, suggesting that the extinction close to
the outflow source plays an important r\^ole in the observed difference between
the optical and IR morphologies. Cep E is a unique object since it provides a
link between the spectroscopic properties of the optical Herbig-Haro (HH)
objects and those of deeply embedded outflows.Comment: Accepted Astron. J., 8 files: paper, tables plus 6 figure
HST NICMOS Images of the HH 7/11 Outflow in NGC1333
We present near infrared images in H2 at 2.12um of the HH 7/11 outflow and
its driving source SVS 13 taken with HST NICMOS 2 camera, as well as archival
Ha and [SII] optical images obtained with the WFPC2 camera. The NICMOS high
angular resolution observations confirm the nature of a small scale jet arising
from SVS 13, and resolve a structure in the HH 7 working surface that could
correspond to Mach disk H2 emission. The H2 jet has a length of 430 AU (at a
distance of 350 pc), an aspect ratio of 2.2 and morphologically resembles the
well known DG Tau optical micro-jet. The kinematical age of the jet (approx. 10
yr) coincides with the time since the last outburst from SVS 13. If we
interpret the observed H2 flux density with molecular shock models of 20-30
km/s, then the jet has a density as high as 1.e+5 cc. The presence of this
small jet warns that contamination by H2 emission from an outflow in studies
searching for H2 in circumstellar disks is possible. At the working surface,
the smooth H2 morphology of the HH 7 bowshock indicates that the magnetic field
is strong, playing a major role in stabilizing this structure. The H2 flux
density of the Mach disk, when compared with that of the bowshock, suggests
that its emission is produced by molecular shocks of less than 20 km/s. The
WFPC2 optical images display several of the global features already inferred
from groundbased observations, like the filamentary structure in HH 8 and HH
10, which suggests a strong interaction of the outflow with its cavity. The H2
jet is not detected in {SII] or Ha, however, there is a small clump at approx.
5'' NE of SVS 13 that could be depicting the presence either of a different
outburst event or the north edge of the outflow cavity.Comment: 13 pages, 5 figures (JPEGs
The Stability of Radiatively Cooled Jets in Three Dimensions
The effect of optically thin radiative cooling on the Kelvin-Helmholtz
instability of three dimensional jets is investigated via linear stability
theory and nonlinear hydrodynamical simulation. Two different cooling functions
are considered: radiative cooling is found to have a significant effect on the
stability of the jet in each case. The wavelengths and growth rates of unstable
modes in the numerical simulations are found to be in good agreement with
theoretical predictions. Disruption of the jet is found to be sensitive to the
precessional frequency at the origin with lower frequencies leading to more
rapid disruption. Strong nonlinear effects are observed as the result of the
large number of normal modes in three dimensions which provide rich mode-mode
interactions. These mode-mode interactions provide new mechanisms for the
formation of knots in the flows. Significant structural features found in the
numerical simulations appear similar to structures observed on protostellar
jets.Comment: 32 pages, 13 figures, figures included in page tota
The lower mass function of the young open cluster Blanco 1: from 30 Mjup to 3 Mo
We performed a deep wide field optical survey of the young (~100-150 Myr)
open cluster Blanco1 to study its low mass population well down into the brown
dwarf regime and estimate its mass function over the whole cluster mass
range.The survey covers 2.3 square degrees in the I and z-bands down to I ~ z ~
24 with the CFH12K camera. Considering two different cluster ages (100 and 150
Myr), we selected cluster member candidates on the basis of their location in
the (I,I-z) CMD relative to the isochrones, and estimated the contamination by
foreground late-type field dwarfs using statistical arguments, infrared
photometry and low-resolution optical spectroscopy. We find that our survey
should contain about 57% of the cluster members in the 0.03-0.6 Mo mass range,
including 30-40 brown dwarfs. The candidate's radial distribution presents
evidence that mass segregation has already occured in the cluster. We took it
into account to estimate the cluster mass function across the
stellar/substellar boundary. We find that, between 0.03Mo and 0.6Mo, the
cluster mass distribution does not depend much on its exact age, and is well
represented by a single power-law, with an index alpha=0.69 +/- 0.15. Over the
whole mass domain, from 0.03Mo to 3Mo, the mass function is better fitted by a
log-normal function with m0=0.36 +/- 0.07Mo and sigma=0.58 +/- 0.06. Comparison
between the Blanco1 mass function, other young open clusters' MF, and the
galactic disc MF suggests that the IMF, from the substellar domain to the
higher mass part, does not depend much on initial conditions. We discuss the
implications of this result on theories developed to date to explain the origin
of the mass distribution.Comment: 18 pages, 15 figures and 5 tables accepted in A&
Improving the Efficiency of Reasoning Through Structure-Based Reformulation
Abstract. We investigate the possibility of improving the efficiency of reasoning through structure-based partitioning of logical theories, combined with partitionbased logical reasoning strategies. To this end, we provide algorithms for reasoning with partitions of axioms in first-order and propositional logic. We analyze the computational benefit of our algorithms and detect those parameters of a partitioning that influence the efficiency of computation. These parameters are the number of symbols shared by a pair of partitions, the size of each partition, and the topology of the partitioning. Finally, we provide a greedy algorithm that automatically reformulates a given theory into partitions, exploiting the parameters that influence the efficiency of computation.
ROCker Models for Reliable Detection and Typing of Short-Read Sequences Carrying beta-Lactamase Genes
Identification of genes encoding beta-lactamases (BLs) from short-read sequences remains challenging due to the high frequency of shared amino acid functional domains and motifs in proteins encoded by BL genes and related non-BL gene sequences. Divergent BL homologs can be frequently missed during similarity searches, which has important practical consequences for monitoring antibiotic resistance. To address this limitation, we built ROCker models that targeted broad classes (e.g., class A, B, C, and D) and individual families (e.g., TEM) of BLs and challenged them with mock 150-bp- and 250-bp-read data sets of known composition. ROCker identifies most-discriminant bit score thresholds in sliding windows along the sequence of the target protein sequence and hence can account for nondiscriminative domains shared by unrelated proteins. BL ROCker models showed a 0% false-positive rate (FPR), a 0% to 4% false-negative rate (FNR), and an up-to-50-fold-higher F1 score [2 x precision x recall/(precision + recall)] compared to alternative methods, such as similarity searches using BLASTx with various e-value thresholds and BL hidden Markov models, or tools like DeepARG, ShortBRED, and AMRFinder. The ROCker models and the underlying protein sequence reference data sets and phylogenetic trees for read placement are freely available through http://enve-omics.ce.gatech.edu/data/rocker-bla. Application of these BL ROCker models to metagenomics, metatranscriptomics, and high-throughput PCR gene amplicon data should facilitate the reliable detection and quantification of BL variants encoded by environmental or clinical isolates and microbiomes and more accurate assessment of the associated public health risk, compared to the current practice. IMPORTANCE Resistance genes encoding beta-lactamases (BLs) confer resistance to the widely prescribed antibiotic class beta-lactams. Therefore, it is important to assess the prevalence of BL genes in clinical or environmental samples for monitoring the spreading of these genes into pathogens and estimating public health risk. However, detecting BLs in short-read sequence data is technically challenging. Our ROCker model-based bioinformatics approach showcases the reliable detection and typing of BLs in complex data sets and thus contributes toward solving an important problem in antibiotic resistance surveillance. The ROCker models developed substantially expand the toolbox for monitoring antibiotic resistance in clinical or environmental settings
The immunology and genetics of resistance of sheep to Teladorsagia circumcincta
Teladorsagia circumcincta is one of the most economically important gastrointestinal nematode parasites of sheep in cool temperate regions, to which sheep show genetically-varying resistance to infection. This is a very common parasite and viable sheep production requires the extensive use of anthelmintic drugs. However, the emergence of drug-resistant parasites has stimulated the search for alternative control strategies to curb production losses. Lambs become infected soon after weaning and begin to control parasite burden within 8-10 weeks of continual infection. This control is an acquired characteristic mediated by the development of parasite-specific antibodies. This paper describes the immunology associated with resistance and susceptibility, focussing on differential T cell activation that regulates the production of specific effector mechanisms. It continues by summarizing the methods used to identify genes that could be exploited as molecular markers of selection for resistance. In particular it focusses on the link between understanding the molecular immunology of infection and the identification of candidate genes for selection
Hydrodynamical Simulations of Jet- and Wind-driven Protostellar Outflows
We present two-dimensional hydrodynamical simulations of both jet- and
wind-driven models for protostellar outflows in order to make detailed
comparisons to the kinematics of observed molecular outflows.
Comparing the different simulations with observations, we find that some
outflows, e.g., HH 212, show features consistent with the jet-driven model,
while others, e.g., VLA 05487, are consistent with the wind-driven model.Comment: 38 pages, 14 figures, accepted for publication in Ap
- …
