340 research outputs found
Recommended from our members
Structural and electronic properties of SrZrO3 and Sr(Ti,Zr) O3 alloys
Using hybrid density functional calculations, we study the electronic and structural properties of SrZrO3 and ordered Sr(Ti,Zr)O3 alloys. Calculations were performed for the ground-state orthorhombic (Pnma) and high-temperature cubic (Pm3m) phases of SrZrO3. The variation of the lattice parameters and band gaps with Ti addition was studied using ordered SrTixZr1-xO3 structures with x=0, 0.25, 0.5, 0.75, and 1. As Ti is added to SrZrO3, the lattice parameter is reduced and closely follows Vegard's law. On the other hand, the band gap shows a large bowing and is highly sensitive to the Ti distribution. For x=0.5, we find that arranging the Ti and Zr atoms into a 1×1SrZrO3/SrTiO3 superlattice along the [001] direction leads to interesting properties, including a highly dispersive single band at the conduction-band minimum (CBM), which is absent in both parent compounds, and a band gap close to that of pure SrTiO3. These features are explained by the splitting of the lowest three conduction-band states due to the reduced symmetry of the superlattice, lowering the band originating from the in-plane Ti 3dxy orbitals. The lifting of the t2g orbital degeneracy around the CBM suppresses scattering due to electron-phonon interactions. Our results demonstrate how short-period SrZrO3/SrTiO3 superlattices could be exploited to engineer the band structure and improve carrier mobility compared to bulk SrTiO3
Metastable precursors during the oxidation of the Ru(0001) surface
Using density-functional theory, we predict that the oxidation of the
Ru(0001) surface proceeds via the accumulation of sub-surface oxygen in
two-dimensional islands between the first and second substrate layer. This
leads locally to a decoupling of an O-Ru-O trilayer from the underlying metal.
Continued oxidation results in the formation and stacking of more of these
trilayers, which unfold into the RuO_2(110) rutile structure once a critical
film thickness is exceeded. Along this oxidation pathway, we identify various
metastable configurations. These are found to be rather close in energy,
indicating a likely lively dynamics between them at elevated temperatures,
which will affect the surface chemical and mechanical properties of the
material.Comment: 11 pages including 9 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles
We present a comprehensive first-principles investigation of the atomic and electronic structures of gallium nitride nanowires, and examine the dependence on nanowire diameter and shape. We consider nanowires in the 0001 growth direction, with diameters ranging from 8 to 35 and investigate the influence of saturating the dangling bonds at the edges of nanowires. We find that unsaturated nanowires are semiconducting and contain dangling bond states in the region of the band gap, the positions of which remain rather constant with varying diameter. Saturating the nanowires with hydrogen removes these states, and the band gap decreases with increasing nanowire diameter. For the unsaturated wires there is a considerable contraction of the Ga-N bond lengths at the edge of the wires of 6.0%?7.4%, while for saturated wires it is 1.5%. We also calculate the heat of formation of the nanowires and find that as the diameter of the nanowire increases, the average relative stability of the nanowire increases, as intuitively expected
Spatial Distribution and Magnetism in Poly-Cr-doped GaN from First Principles
Large scale density-functional theory calculations have been performed to understand the spatial distribution and magnetic coupling of Cr-doped GaN, in which exhaustive structural and magnetic configurations have been investigated by doping of up to five Cr atoms in large supercells. Our results provide direct evidence that the distribution of the doped magnetic ions is neither homogeneous nor random as widely assumed previously. Rather, under both Ga-rich and N-rich growth conditions, the Cr atoms have a strong tendency to form substitutional, embedded clusters with short-range magnetic interactions maintaining the wurtzite structure. Significantly, while the ferromagnetic state is favored for pair doping, for more than two-Cr-atom clustering configurations, states containing antiferromagnetic or ferrimagnetic coupling with net spins in the range of 0.06-1.47µB/Cr are preferred. The formation of embedded clusters leads to notable local structural distortions and considerable magnetic moments on the Cr-bonded N atoms. Also importantly, the electrical properties (metallic, half-metallic, or semiconducting) are found to strongly depend on the dopant concentration. We propose a picture where various cluster configurations coexist and the statistical distribution and associated magnetism depend sensitively on sample growth details. The results obtained are in agreement with recent experiments. Such a view can explain many hitherto puzzling experimental observations, e.g., the much lower value of the measured mean saturation magnetic moment on Cr as compared to the theoretically predicted value for the isolated dopants; the anomalous lattice constant change in relation to the dopant concentration and temperature; and the strong dependence of the magnetization on the Cr concentration, growth temperature, and annealing. We find a similar behavior for Mn in GaN and Cr and Mn in AlN and argue that such a scenario may also hold for other dilute magnetic semiconductor systems
Insights into the function of silver as an oxidation catalyst by ab initio, atomistic thermodynamics
To help understand the high activity of silver as an oxidation catalyst,
e.g., for the oxidation of ethylene to epoxide and the dehydrogenation of
methanol to formaldehyde, the interaction and stability of oxygen species at
the Ag(111) surface has been studied for a wide range of coverages. Through
calculation of the free energy, as obtained from density-functional theory and
taking into account the temperature and pressure via the oxygen chemical
potential, we obtain the phase diagram of O/Ag(111). Our results reveal that a
thin surface-oxide structure is most stable for the temperature and pressure
range of ethylene epoxidation and we propose it (and possibly other similar
structures) contains the species actuating the catalysis. For higher
temperatures, low coverages of chemisorbed oxygen are most stable, which could
also play a role in oxidation reactions. For temperatures greater than about
775 K there are no stable oxygen species, except for the possibility of O atoms
adsorbed at under-coordinated surface sites Our calculations rule out thicker
oxide-like structures, as well as bulk dissolved oxygen and molecular
ozone-like species, as playing a role in the oxidation reactions.Comment: 15 pages including 9 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Role of Embedded Clustering in Dilute Magnetic Semiconductors: Cr Doped GaN
Results of extensive density-functional studies provide direct evidence that Cr atoms in Cr:GaN have a strong tendency to form embedded clusters, occupying Ga sites. Significantly, for larger than 2-Cr-atom clusters, states containing antiferromagnetic coupling with net spin in the range 0.06-1.47 µB/Cr are favored. We propose a picture where various configurations coexist and the statistical distribution and associated magnetism will depend sensitively on the growth details. Such a view may elucidate many puzzling observations related to the structural and magnetic properties of III-N and other dilute semiconductors
Sub-surface Oxygen and Surface Oxide Formation at Ag(111): A Density-functional Theory Investigation
To help provide insight into the remarkable catalytic behavior of the
oxygen/silver system for heterogeneous oxidation reactions, purely sub-surface
oxygen, and structures involving both on-surface and sub-surface oxygen, as
well as oxide-like structures at the Ag(111) surface have been studied for a
wide range of coverages and adsorption sites using density-functional theory.
Adsorption on the surface in fcc sites is energetically favorable for low
coverages, while for higher coverage a thin surface-oxide structure is
energetically favorable. This structure has been proposed to correspond to the
experimentally observed (4x4) phase. With increasing O concentrations, thicker
oxide-like structures resembling compressed Ag2O(111) surfaces are
energetically favored. Due to the relatively low thermal stability of these
structures, and the very low sticking probability of O2 at Ag(111), their
formation and observation may require the use of atomic oxygen (or ozone, O3)
and low temperatures. We also investigate diffusion of O into the sub-surface
region at low coverage (0.11 ML), and the effect of surface Ag vacancies in the
adsorption of atomic oxygen and ozone-like species. The present studies,
together with our earlier investigations of on-surface and
surface-substitutional adsorption, provide a comprehensive picture of the
behavior and chemical nature of the interaction of oxygen and Ag(111), as well
as of the initial stages of oxide formation.Comment: 17 pages including 14 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Theoretical analysis of the electronic structure of the stable and metastable c(2x2) phases of Na on Al(001): Comparison with angle-resolved ultra-violet photoemission spectra
Using Kohn-Sham wave functions and their energy levels obtained by
density-functional-theory total-energy calculations, the electronic structure
of the two c(2x2) phases of Na on Al(001) are analysed; namely, the metastable
hollow-site structure formed when adsorption takes place at low temperature,
and the stable substitutional structure appearing when the substrate is heated
thereafter above ca. 180K or when adsorption takes place at room temperature
from the beginning. The experimentally obtained two-dimensional band structures
of the surface states or resonances are well reproduced by the calculations.
With the help of charge density maps it is found that in both phases, two
pronounced bands appear as the result of a characteristic coupling between the
valence-state band of a free c(2x2)-Na monolayer and the
surface-state/resonance band of the Al surfaces; that is, the clean (001)
surface for the metastable phase and the unstable, reconstructed "vacancy"
structure for the stable phase. The higher-lying band, being Na-derived,
remains metallic for the unstable phase, whereas it lies completely above the
Fermi level for the stable phase, leading to the formation of a
surface-state/resonance band-structure resembling the bulk band-structure of an
ionic crystal.Comment: 11 pages, 11 postscript figures, published in Phys. Rev. B 57, 15251
(1998). Other related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
Oxygen adsorption on the Ru (10 bar 1 0) surface: Anomalous coverage dependence
Oxygen adsorption onto Ru (10 bar 1 0) results in the formation of two
ordered overlayers, i.e. a c(2 times 4)-2O and a (2 times 1)pg-2O phase, which
were analyzed by low-energy electron diffraction (LEED) and density functional
theory (DFT) calculation. In addition, the vibrational properties of these
overlayers were studied by high-resolution electron loss spectroscopy. In both
phases, oxygen occupies the threefold coordinated hcp site along the densely
packed rows on an otherwise unreconstructed surface, i.e. the O atoms are
attached to two atoms in the first Ru layer Ru(1) and to one Ru atom in the
second layer Ru(2), forming zigzag chains along the troughs. While in the
low-coverage c(2 times 4)-O phase, the bond lengths of O to Ru(1) and Ru(2) are
2.08 A and 2.03 A, respectively, corresponding bond lengths in the
high-coverage (2 times 1)-2O phase are 2.01 A and 2.04 A (LEED). Although the
adsorption energy decreases by 220 meV with O coverage (DFT calculations), we
observe experimentally a shortening of the Ru(1)-O bond length with O coverage.
This effect could not be reconciled with the present DFT-GGA calculations. The
nu(Ru-O) stretch mode is found at 67 meV [c(2 times 4)-2O] and 64 meV [(2 times
1)pg-2O].Comment: 10 pages, figures are available as hardcopies on request by mailing
[email protected], submitted to Phys. Rev. B (8. Aug. 97), other related
publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
- …