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Abstract
We present a comprehensive first-principles investigation of the atomic and electronic structures

of gallium nitride nanowires, and examine the dependence on nanowire diameter and shape. We

consider nanowires in the [0001] growth direction, with diameters ranging from 8 to 35 Å, and

investigate the influence of saturating the dangling bonds at the edges of nanowires. We find

that unsaturated nanowires are semi-conducting and contain dangling bond states in the region of

the band gap, the positions of which remain rather constant with varying diameter. Saturating the

nanowires with hydrogen removes these states, and the band gap decreases with increasing nanowire

diameter. For the unsaturated wires there is a considerable contraction of the Ga-N bondlengths at

the edge of the wires of 6.0-7.4%, while for saturated wires it is <1.5%. We also calculate the heat

of formation of the nanowires and find that as the diameter of the nanowire increases, the average

relative stability of the nanowire increases, as intuitively expected.

PACS numbers: 73.22.-f, 73.61.Ey, 71.15.Nc
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I. INTRODUCTION

Nanotechnology has the potential to impact on every aspect of science, technology and

education, with applications in areas such as semiconductor devices, integrated sensors, drug

delivery systems, coatings and structural materials, with one of the most studied nanoma-

terials being carbon nanotubes.1,2 Fundamental studies are required of nanostructures for a

more complete understanding of their unique properties. In contrast to nanotubes, whose

electronic properties are largely determined by the chirality of the nanotube, nanowires

have the advantage that many of their properties, particularly electronic structure, can be

controlled during growth by varying the size, composition and growth direction.2 There

have been recent reports of successful fabrication of high quality gallium nitride nanostruc-

tures such as quantum dots, nanocrystallites, nanowires and nanotubes.3–5 Gallium nitride

(GaN) nanowires are one of the most promising building blocks in nanotechnology appli-

cations, because the large band gap and structural confinement have great potential for

use in technologies related to ultraviolet-blue light-emitting diodes, detectors, lasers, high

temperature/high power devices and potential spintronic devices.6

Experimental studies producing GaN nanowires typically generate them with the wurtzite

structure,6–12 although they have also been reported in the zinc blende structure.13 The diam-

eters of wires synthesised experimentally typically range from approximately 5-100 nm.10,11

There are also a number of different growth directions reported, including the [0001],6,10–12

[101̄0]14,15 and [112̄0]12,15 directions. Recently GaN nanowires with internal p-n junctions

have been fabricated through Mg incorporation.16 GaN nanowires have also recently been

investigated as dilute magnetic semiconductor systems. In particular, when doped with Mn,

a ferromagnetic behaviour at room temperature has been reported.17–19

There have been several recent theoretical investigations of the electronic structure of

GaN nanowires, and in all cases, a periodic slab model was used to calculate the nanowires.

Tsai et al.20 examined three unsaturated nanowires in the [0001] growth direction with diam-

eters of 10, 15 and 18 Å, and found that the average bond length of the nanowire decreases as

the nanowire diameter decreases. Gulans and Tale21 examined three unsaturated nanowires

in the [0001] direction of approximately 20 Å diameter, with shapes ranging from hexago-

nal to essentially circular, finding the hexagonal shaped nanowire is the most stable. They

also found that the Young’s modulus of the nanowire decreases with decreasing diameter.
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Wang et al.22,23 have calculated the electronic structure of an unsaturated nanowire in the

[0001] growth direction with a 10 Å diameter, and examined the magnetic properties after

pair-doping with manganese or chromium atoms. They found both dopants produce ferro-

magnetic coupling, with preferential substitution of these atoms at the edge of the nanowire.

There have also been a number of recent electronic structure calculations of other semi-

conductor nanowires including Si,24–27 ZnO,28 AlN,29 GaAs,30 and InP.30,31 Zheng et al.25

report that the band gap of hydrogen-saturated Si [001] nanowires decreases with increasing

diameter, over the diameter range of 7-27 Å. Zhao et al.29 found that the strain energy

of unsaturated AlN [0001] nanowires is inversely proportional to the nanowires diameter,

for nanowires with diameters ranging from 7-22 Å. Schmidt et al.31 investigated hydrogen-

saturated InP [111] nanowires with diameters ranging from 18-21 Å, and report that the

energy gap is proportional to 1/d2 (where d is the diameter).

To date there has been no comprehensive investigation into the atomic and electronic

structures of GaN nanowires and their dependence on diameter and geometry, nor the effect

of saturation of dangling bonds. The present work represents the first such extensive study of

these systems, which we perform using first principles density functional theory calculations.

II. METHODOLOGY

Density functional theory (DFT) calculations are performed using two codes, namely,

SIESTA32,33 and DMol3,34,35 where we employ the generalised gradient approximation

(GGA) of Perdew, Burke and Ernzerhof.36 For SIESTA, the norm-conserving pseudopo-

tentials of Troullier and Martins37 are used, with the valence electron configurations of

gallium 3d10, 4s2, 4p1, nitrogen 2s2, 2p3 and hydrogen 1s1. A double zeta basis set with

polarisation functions is used for all atoms. The localized basis set in SIESTA consists of

numerical atomic orbitals, which are radially confined to an extent that induces an energy

shift in each orbital of 0.01 Ry. Hartree and exchange-correlation energies are evaluated on

a uniform real space grid of points with a defined maximum kinetic energy of 300 Ry. The

Brillouin zone of the bulk is sampled using a (8 × 8 × 5) Monkhorst Pack38 k-grid gener-

ating 21 k-points in the irreducible part of the Brillouin zone (IBZ), and for all nanowires,

a (1 × 1 × 3) k-grid is used, producing 2 k-points in the IBZ. For DMol3, core electrons

are represented by the semi-local DSPP pseudopotential,39 with the valence electron con-
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figurations of gallium 3d10, 4s2, 4p1, nitrogen 1s2, 2s2, 2p3 and hydrogen 1s1. A double

numerical basis set with polarisation functions is used for all atoms, using a real space cutoff

of 9 Bohr. The Brillouin zone of the bulk is sampled using a (6× 6× 6) Monkhorst Pack38

k-grid generating 21 k-points in the IBZ. Nanowires are sampled with a (2× 2× 2) k-grid,

producing 2 k-points and 4 k-points in the IBZ for hexagonal and triangular cross-section

nanowires, respectively.

The GDIS program40 is used to generate nanowires in the [0001] growth direction. Dif-

ferent shape and size nanowires are chosen in such a way as to minimise the number of

dangling bonds on outer edge atoms. We define the nanowire diameter as the maximum

distance between edge atoms on opposite sides of the nanowire. Full atomic relaxation is

performed for all nanowires with both codes. These calculations are also carried out with

dangling bonds on nanowires saturated with hydrogen atoms (both SIESTA and DMol3)

and appropriate fractionally-charged hydrogen atoms (DMol3 only).

III. RESULTS & DISCUSSION

A. Bulk a-Ga, GaN and the N2 molecule

We first calculate the physical properties of the N2 dimer, bulk a-Ga and GaN, in order to

examine the accuracy of numerical aspects of SIESTA and DMol3 calculations. The results

for N2 and a-Ga are listed in Tables I and II, respectively. For calculations of a-Ga we use

the same SIESTA and DMol3 parameters as for GaN calculations. However, for calculations

of the N2 dimer and the isolated Ga atom, we use slightly more accurate parameters, with

SIESTA using an energy shift of 0.005 Ry and maximum kinetic energy cutoff of 400 Ry,

and DMol3 using a real space cutoff of 20 Bohr.

For the N2 dimer, the bond length calculated with SIESTA is 2.3% larger than experi-

ment whereas the DMol3 bond length is only 0.7% larger. Correspondingly, with the longer

bond length for the dimer, the vibrational frequency calculated with SIESTA is somewhat

smaller, when compared to the DMol3 and experimental values. The binding energies for

SIESTA and DMol3 vary by about 0.8 eV, with values of 9.55 eV and 10.34 eV, respectively.

SIESTA calculations employ the Trouiller-Martins37 pseudopotential formulation while for

DMol3 we use the DSPP39 pseudopotential, so the different pseudopotentials may explain
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TABLE I: Calculated and experimental physical properties of the N2 dimer. “PPPW” represents

“pseudopotential plane-wave” calculations.

SIESTA DMol3 Expt.a PPPWb

Bond length (Å) 1.124 1.106 1.098 1.105

Frequency (cm-1) 2282 2359 2359 2346

Binding energy (eV) 9.55 10.34 9.75 9.87

aReference 41.
bReference 42.

TABLE II: Calculated and experimental physical properties of bulk a-Ga. “PPPW” represents

“pseudopotential plane-wave” calculations.

SIESTA DMol3 Expt. PPPWc

a (Å) 4.704 4.645 4.526a 4.590

c/a 1.660 1.671 1.692 1.690

b/a 0.985 0.986 0.998 0.993

Bulk modulus (GPa) 71 58 50-60b 49

Cohesive energy (eV) 2.74 2.70 2.81b 2.69

aReference 43.
bReference 44.
cReference 45.

the differences in binding energies. The pseudopotential plane-wave (PPPW) calculations of

Stampfl et al.42 also use Trouiller-Martins pseudopotentials, and report a binding energy of

9.87 eV, much closer in agreement to the SIESTA value. For the orthorhombic (D18
2h space-

group) a-Ga structure, the calculated lattice parameter, a, with SIESTA is approximately

3.9% larger than experiment, and 2.6% larger with DMol3. The calculated cohesive energies

for SIESTA and DMol3 compare closely with previous results from Fuchs et al.45 and are

only slightly underestimated with respect to experiment (2.5% less with SIESTA and 3.9%

less with DMol3). All calculated bulk moduli values in Table II are close to the experimen-

tal values, or slightly larger in the case of SIESTA. As all calculations report larger lattice

parameters than the experimental values, one might expect that the corresponding bulk
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TABLE III: Bulk properties of wurtzite GaN as calculated using DFT-GGA and comparison with

experimental results. “PPPW” represents “pseudopotential plane-wave” calculations.

SIESTA DMol3 Expt. PPPWg

a (Å) 3.28 3.18 3.19a 3.24

c (Å) 5.31 5.18 5.19a 5.17

u 0.378 0.377 0.377a 0.376

Bulk modulus (GPa) 150 180 188-245b,c 172

Band gap (eV) 1.44 2.58 3.50d 1.45

Cohesive energy (eV) 8.43 9.06 9.06e 8.26

Heat of formation (eV) −0.92 −1.19 −1.14f

aReference 48.
bReference 49.
cReference 50.
dReference 51.
eReference 52.
fReference 53.
gReference 42.

moduli values should be less than the experimental value. However, this last observation is

a generalisation that typically applies to simple ionic solids, whereas the a-Ga structure is a

particularly complex structure where both covalent and metallic bonds coexist.46 Improve-

ment in the SIESTA results can be obtained through the optimisation of the basis set with

respect to the material of interest,47 however this can reduce transferability.

The optimized bulk structures of wurtzite and zinc blende GaN are listed in Tables III and

IV, respectively. DMol3 produces lattice parameters, cohesive energies, heats of formation,

and bulk moduli values that are in very close agreement with experimental values. The

lattice parameters from SIESTA calculations are 2-3% larger than the experimental values,

consistent with observations that GGA functionals can overestimate cell volumes by a few

percent.56 Other bulk properties calculated with SIESTA also show reasonable agreement

with those of other calculations and experimental studies. The SIESTA results compare

well with the DFT calculations of Stampfl et al.42 which, as mentioned above, also employ

the Trouiller-Martins pseudopotential. In contrast to the binding and cohesive energies, we

define the heat of formation such that a negative number indicates an exothermic process.
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TABLE IV: Bulk properties of zinc blende GaN as calculated using DFT-GGA and comparison

with experimental results. “PPPW” represents “pseudopotential plane-wave” calculations.

SIESTA DMol3 Expt. PPPWe

a (Å) 4.58 4.50 4.50a 4.59

Bulk modulus (GPa) 151 177 190a 156

Band gap (eV) 1.33 2.46 3.45b 1.28

Cohesive energy (eV) 8.40 9.04 9.06c 8.25

Heat of formation (eV) −0.89 −1.17 −1.14d

aReference 54.
bReference 55.
cReference 52.
dReference 53.
eReference 42.
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FIG. 1: Band structure of wurtzite GaN calculated using (A) SIESTA and (B) DMol3.

Both calculations correctly predict the wurtzite ground state structure.

The band structures of wurtzite GaN as obtained from SIESTA and DMol3 are shown in

Fig. 1. Band gaps calculated using DFT are systematically underestimated when compared

to experimental values. There is a noticeable difference (about 1 eV) between the band

gaps calculated with DMol3 and SIESTA, as reported in Tables III and IV. Band gaps can

be very sensitive to the choice of functional, so the different pseudopotentials employed in

the DMol3 and SIESTA codes, together with the slightly different lattice parameters, could

indeed give rise to this effect. The overall form of the band structures from SIESTA and

DMol3 in Fig. 1 match closely.
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FIG. 2: (color online) Nanowires in the [0001] direction that have (A) hexagonal and (B) triangular

shaped cross-sections, viewed along the wire direction, with perspective views of the 108 and 66

atom nanowires included. The number of atoms used in the calculations for each nanowire, and the

diameter (in parenthesis) are also labelled. Nitrogen and gallium atoms are indicated by the dark

(blue) and light (aqua) spheres, respectively.

B. Nanowires

We generate wurtzite GaN nanowires in the [0001] growth direction for both hexagonal

and triangular cross-sections. GaN nanowires typically form hexagonal shapes,57 although in

the [112̄0] direction, triangular shape nanowires have also been observed.58,59 The diameters

that we study vary from approximately 8 to 35 Å. The shapes of nanowires are chosen in

such a way as to minimise the number of dangling bonds on outer edge atoms. The resulting

edge atoms have a minimum coordination of three, leaving at most one dangling bond on the

edge atoms. We examine the atomic structure and electronic properties of both unsaturated

and saturated (with hydrogen or fractionally charged hydrogen) nanowires. All nanowires

considered are shown in Fig. 2. All hexagonal and triangular nanowires have
{
1010

}
lateral

facets. We selected these facets since the surface energy of GaN
(
1010

)
is lower compared to

the
(
1120

)
surface (118 versus 123 meV/Å2, respectively).?
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1. Atomic structure

Examining the nanowires (hexagonal and triangular) with SIESTA, when dangling bonds

are not saturated, the Ga-N bond length at the outermost edge along the [0001] direction

ranges from 1.858 Å to 1.886 Å (see “L1” in Fig. 3). Compared to the bulk value of 2.006

Å, this represents a contraction of 6.0-7.4%. This behaviour is found across the entire range

of diameters of nanowires examined. At the centre of the nanowires, the contraction is less

than ∼0.3%. Using DMol3, a similar contraction is also found, with values ranging from

5.9-6.9% for all the range of nanowires examined, and contractions within the nanowires,

similarly less than ∼0.6%. These values are close to the contractions reported for other

DFT calculations, with Wang et al.22 obtaining a 5.9% contraction for a 10 Å diameter

nanowire, and Tsai et al.20 obtaining a 6.2-6.4% contraction for 10-18 Å diameter nanowires.

Theoretical calculations of the GaN
(
1010

)
surface also report a similar ∼6% contraction.?

The Ga-N bond which forms a zigzag chain from the outermost surface, running perpen-

dicular to the nanowire direction, also contracts during relaxation (see “L2” in Fig. 3). For

SIESTA, the zigzag bond length at the outermost edge of the nanowire contracts by 1.5-

2.5%, while in the centre of the nanowire, the contraction is less than 1.2%. Using DMol3,

this contraction is 1.4-2.8% at the outermost edge of the nanowire and less than 0.6% in

the centre of the nanowire. Wang et al.22 report the contraction of the zigzag chain at the

outermost edge is ∼2% from calculations of a 10 Å diameter nanowire, comparing well with

the values from SIESTA and DMol3 calculations.

The contraction in Ga-N bonds at the edge of the nanowires also produces a correspond-

ing change in bond angles, with the N-Ga-N and Ga-N-Ga angles of hexagonal nanowires

being 109.0o before relaxation using SIESTA, changing to 113.7-116.6o and 107.5-108.5o,

respectively, after relaxation. These Ga-N-Ga (θ1) and N-Ga-N (θ2) angles are illustrated

in Fig. 3. Using DMol3, similar changes were again observed with the bond angles changing

from 109.1o before relaxation, to 113.8-115.2o and 106.1-107.7o, respectively, after relax-

ation. Similar changes were observed with both codes for triangular nanowires. Theoretical

calculations of the GaN
(
1010

)
surface also show similar changes, with bond angles of ∼118o

and ∼105o after relaxation.?

If we consider the average Ga-N bond length of the whole nanowire we find, for the three

selected diameters of 6.3, 12.7, 25.5 Å for the triangular wires using DMol3, the values of
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FIG. 3: (color online) Section of a hexagonal GaN nanowire (108 atoms), illustrating the change in

outer edge Ga-N bonds and corresponding angles, where nitrogen and gallium atoms are represented

by the dark (blue) and light (aqua) spheres, respectively.

1.920, 1.930 and 1.939 Å, respectively. For the three hexagonal wires of 9.5, 15.9 and 28.6 Å,

we obtain 1.927, 1.936 and 1.938 Å, again increasing with nanowire diameter, approaching

the bulk value as expected. The average Ga-N bond length in bulk GaN obtained using

DMol3 is 1.945 Å. Similar results are found using SIESTA.

After saturating the dangling bonds of the nanowires with hydrogen, there are still the

same trends in the changes in the Ga-N bond lengths as described above for unsaturated

nanowires, although these changes are now much less. For SIESTA, the contraction of Ga-N

bonds along the [0001] nanowire range from less than 0.5% at the edge of the nanowire

to less than 0.2% at the centre, while for the zigzag Ga-N bonds, the contraction ranges

from 0.2-1.5% at the edge of the nanowires to a slight expansion of less than 0.4% at the

centre. For DMol3, we examined the changes for saturation with both hydrogen atoms and

fractionally charged (either 0.75e for N or 1.25e for Ga) hydrogen atoms. When saturated

with hydrogen, the contraction of Ga-N bonds along the [0001] nanowire range from 1.0-1.7%

at the edge of the nanowire to less than 0.2% at the centre, while for the zigzag Ga-N bonds,

the contraction ranges from 0.7-1.0% at the edge of the nanowires to a small expansion of

less than 0.4% at the centre. When saturated with fractionally charged hydrogen, these

respective values change to 1.1-1.3% (edge), less than 0.2% (centre), 0.5-0.9% (edge zigzag)

and less than 0.2% (centre zigzag).
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FIG. 4: The band structures for unsaturated hexagonal nanowires with diameters of (A) 9.5 (48

atoms) and (B) 28.6 (300 atoms) Å, and triangular nanowires with diameters of (C) 12.7 (66 atoms)

and (D) 25.5 (194 atoms) Å. Calculations are performed using the DMol3 code, and the energy

zero is set at the highest occupied level. “Hex” and “Tri” represent “hexagonal” and “triangular”,

respectively.

2. Band structure

The band structures for unsaturated nanowires are shown in Fig. 4, as calculated by

DMol3 for hexagonal nanowires with diameters of 9.5 and 28.6 Å (Figs. 4A and 4B) and

triangular nanowires with diameters of 12.7 and 25.5 Å (Figs. 4C and 4D). A similar result

is obtained for all sized nanowires, so we have selected one nanowire as a representative

of a “small” or a “large” diameter hexagonal or triangular nanowire. Figure 5 shows the

corresponding result for saturated wires. From Fig. 4, it can be seen that the “band gaps”

for the unsaturated nanowires are less than for the saturated nanowires. This is due to

dangling bonds of edge atoms on the unsaturated nanowires. These dangling bonds produce

edge-induced states (bands) in the band gaps located above the valence band maximum

(VBM) and below the conduction band minimum (CBM). From comparison with the band

structures of the corresponding saturated nanowire, these edge-induced states can be clearly

seen, and will be described later in more detail. The “band gap” of unsaturated nanowires,
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FIG. 5: The band structures for saturated hexagonal nanowires with diameters of (A) 9.5 (72 atoms)

and (B) 28.6 (360 atoms) Å, and triangular nanowires with diameters of (C) 12.7 (96 atoms) and

(D) 25.5 (248 atoms) Å. Calculations are performed using the DMol3 code, and the energy zero is set

at the highest occupied level. “Hex” and “Tri” represent “hexagonal” and “triangular”, respectively.

i.e. the gap between the edge-induced states, does not change significantly with nanowire

diameter since they are quite localised. When the nanowires are saturated with hydrogen,

these dangling bond bands are removed from the band gap, and the band gap decreases with

increasing nanowire diameter, as will be discussed in more detail below. A similar behaviour

has been reported for AlN nanowires.29

For the saturated and unsaturated nanowires, we investigate the spatial distribution of

the electronic states in the region of the band gap, at the gamma point. For the unsaturated

nanowires we find that the groups of states at the bottom and the top of the band gap

have a significant weight at the edge of the nanowires and are induced by the dangling

bonds. For the saturated nanowires, the states at the bottom and top of the band gap are

bulk-like. To illustrate this, we show in Figs. 6 and 7, the highest occupied (HOMO) and

lowest unoccupied (LUMO) states, as calculated by DMol3, for hexagonal nanowires with

diameters of 9.5 and 28.6 Å and triangular nanowires with diameters of 12.7 and 25.5 Å,

both unsaturated and saturated with hydrogen, respectively.

For the unsaturated nanowires illustrated in Fig. 6, the highest occupied and lowest
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FIG. 6: (color online) Spatial distribution of the HOMO and LUMO states at the gamma point

for unsaturated nanowires, from DMol3 calculations. The HOMO states (upper panel) are shown

for hexagonal wires with diameters of (A) 9.5 (48 atoms) and (C) 28.6 (300 atoms) Å, and for

triangular nanowires with diameters of (E) 12.7 (66 atoms) and (G) 25.5 (194 atoms). The LUMO

states (lower panel) are shown for hexagonal wires with diameters of (B) 9.5 and (D) 28.6 Å, and

for triangular nanowires with diameters of (F) 12.7 and (H) 25.5 Å. Nitrogen and gallium atoms

are indicated by dark (blue), and light (aqua) spheres, respectively, and the orbitals are pale grey

(yellow).

unoccupied states have a significant weight at the edge of the nanowires. This is consistent for

all nanowire diameters, and for both shapes. For the smaller diameter nanowires, there can

still be a visible contribution towards the centre of nanowires, due to their small diameters.

However, for the larger nanowires, this effect is much less. Looking closely at the HOMO

states in Fig. 6, the orbital contributions appear to be centred mainly on the nitrogen atoms,

with p character, while the LUMO states appear to be centred mainly on the gallium atoms,

also with p character. We investigate this in more detail by examining the atom-projected

density of states, as discussed below. For the saturated nanowires illustrated in Fig. 7, the

highest occupied and lowest unoccupied states have a significant weight distributed across

the centre of the nanowires. This is consistent for all nanowire diameters, and for both

shapes. For the smaller diameter nanowires, there can still be a visible contribution towards
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FIG. 7: (color online) Spatial distribution of the HOMO and LUMO states at the gamma point

for saturated nanowires, from DMol3 calculations. The HOMO states (upper panel) are shown for

hexagonal wires with diameters of (A) 9.5 (72 atoms) and (C) 28.6 (360 atoms) Å, and triangular

nanowires with diameters of (E) 12.7 (96 atoms) and (G) 25.5 (248 atoms). The LUMO states

(lower panel) are shown for hexagonal wires with diameters of (B) 9.5 and (D) 28.6 Å, and triangular

nanowires with diameters of (F) 12.7 and (H) 25.5 Å. Nitrogen and gallium atoms are dark (blue)

and light (aqua) spheres, respectively, hydrogen atoms are represented by very small light grey

spheres, and the orbitals are pale grey (yellow).

to edge of the nanowires (a consequence of the small diameter), but this effect is much less

for the larger diameter wires.

3. Density of states

In Figs. 8 and 9 we show the atom-projected density of states (PDOS). In particular, we

consider gallium and nitrogen atoms at the edge of the nanowires and within the centre of the

nanowires for comparison. We have also examined how the PDOS changes with the diameter

of nanowires and the effect of saturating the dangling bonds with hydrogen. From Figs. 8A

(small wire) and 8B (large wire) and it can be seen that for a nitrogen and a gallium atom

at the edge of an unsaturated nanowire, there are noticeable peaks at about 3.5 eV for the
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FIG. 8: (color online) Partial density of states (PDOS) plots for unsaturated hexagonal nanowires

with diameters of (A) 9.5 (48 atoms) and (B) 28.6 (300 atoms) Å, and triangular nanowires with

diameters of (C) 12.7 (66 atoms) and (D) 25.5 (194 atoms) Å, calculated using the DMol3 code. The

black, light grey (orange) and dark grey (blue) lines correspond to s-, p- and d -state contributions,

respectively. The energy zero corresponds to the highest occupied state.

gallium PDOS (contributed from the Ga 3p orbital) and at about −0.4 eV for the nitrogen

PDOS (contributed from the N 2p orbital). These peaks are not present for the PDOS of

gallium and nitrogen atoms in the centre of unsaturated nanowires. This effect can be seen

right across the range of nanowire diameters, and for both hexagonal and triangular (Figs.

8C and 8D) shaped nanowires. Thus, the gallium 3p orbitals predominantly contribute

to the edge states that form at/below the conduction band minimum and the nitrogen 2p

orbitals contribute to the edge states that form at/above the valence band maximum in the

band structure plots shown previously in Fig. 4.

For a nitrogen and gallium atom at the edge of a saturated nanowire, Fig. 9 shows

that there is little difference when compared to the PDOS of a similar atom in the centre

of a nanowire. The hydrogen atoms have the effect of stabilising the bonding molecular

orbitals and pushing the anti-bonding molecular orbitals up, which moves the edge states

from the band gap (this stabilising affect can also been seen in Fig. 5 in the band structure
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FIG. 9: (color online) Partial density of states (PDOS) plots for saturated hexagonal nanowires

with diameters of (A) 9.5 (72 atoms) and (B) 28.6 (360 atoms) Å, and triangular nanowires with

diameters of (C) 12.7 (96 atoms) and (D) 25.5 (248 atoms) Å, calculated using the DMol3 code. The

black, light grey (orange) and dark grey (blue) lines correspond to s-, p- and d -state contributions,

respectively. The energy zero corresponds to the highest occupied state.

plots). This behaviour occurs for both the small and large hexagonal (Figs. 9A and 9B)

and triangular (Figs. 9C and 9D) shaped wires.

4. Dependence of band gap on nanowire diameter

The calculated band gaps as a function of nanowire diameter, for hexagonal and triangular

nanowires, as obtained using SIESTA and DMol3, are shown in Fig. 10. Using DMol3, we

also compare results obtained by saturating dangling bonds with hydrogen (one electron),

and with “hydrogen” that has a fractional charge. The fractional charges are set such that

they represent the environment an edge atom would have if it was in the bulk - namely,

a charge of 0.75e or 1.25e, depending on whether the dangling bond is from a nitrogen or

gallium atom, respectively. This ensures that “perfect” covalent bonds are formed, as has

been suggested for saturating dangling bonds of semiconductor compounds.60

The results in Fig. 10 show similar trends for both SIESTA and DMol3. All saturated
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FIG. 10: Relative band gap as a function of nanowire diameter as obtained using the (A) SIESTA

and (B) DMol3 codes. Band gaps are relative to the calculated bulk GaN band gap. “Hex” and

“Tri” represent “hexagonal” and “triangular”, respectively, and “unsat”, “sat” and “sat - frac. H”

represent “unsaturated”, “saturated” and “saturated with fractional charge hydrogen”, respectively.

nanowires show a decrease in the band gap with increasing diameter, eventually approaching

the bulk band gap values. For unsaturated nanowires, there is little change in the band gaps

with increasing diameter, illustrating the influence of the localised edge-like dangling bond

states in the band gap, mentioned previously.

For DMol3, saturating with fractionally charged hydrogen shows similar results to sat-

uration with hydrogen, for the band gap trends as a function of nanowire diameter. The

band gaps, when saturated with fractionally charged hydrogen, are slightly less than when

saturated with hydrogen. The orbital and PDOS plots when terminating with fraction-

ally charged hydrogen atoms, again show similar trends to those observed with hydrogen,

although there are slight differences. So terminating with fractionally charged hydrogen

atoms produces very similar behaviour to terminating with hydrogen atoms. This similar-

ity may be due to the fact that in all cases, there is always a pair of fractionally charged

hydrogen atoms, which have charges of 0.75 and 1.25, so the sum of the electrons is still 2,

just like when terminating with pair of standard hydrogen atoms. If the fractionally charged

hydrogen atoms did not always occur in a pair, the results may be quite different.

We now examine the relationship between the relative band gap and nanowire diameter

(d), by fitting to the expression ∆Eg = A/dx + c. We plot the relative band gap versus 1/dx

for saturated hexagonal (Fig. 11A) and triangular (Fig. 11B) nanowires from SIESTA and

saturated hexagonal (Fig. 11C) and triangular (Fig. 11D) nanowires from DMol3. From
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Fig. 11, overall there is a reasonable match to the linear relationship for the 1/dx plots, with

the triangular shaped nanowires matching particularly well. For the hexagonal wires (and

triangular, but to a lesser extent) with both DMol3 and SIESTA (Figs. 11A and B), there is

some deviation from the linear relationship at the larger diameters (smaller value of 1/dx). Li

et al.61 used LDA calculations to examine the 1/dx relationship for hexagonal GaN nanowires

with diameters ranging from 11-32 Å, and report the value of “x ” is 1.17. The “x ” value for

hexagonal wires from SIESTA is 1.17 and from DMol3 is 1.46. The triangular wires have a

smaller value of “x ”, namely 0.901 and 0.965 from SIESTA and DMol3, respectively. Nanda

et al.62 used a simple finite-depth square-well model to study cylindrical wires, and report the

band gap is proportional to 1/d2 (where d is the diameter). We also plot the relative band

gap versus 1/d2 for saturated hexagonal (Fig. 12A) and triangular (Fig. 12B) nanowires.

From Figs. 12A and 12B, it can be seen that hexagonal nanowires with diameters ranging

from 19.7 to 35.0 Å, and triangular nanowires with diameter ranging from 12.7 to 25.5 Å,

appear to follow closely the 1/d2 proportionality for the band gap change. Nanowires with

smaller diameters deviate from this proportionality relationship. Schmidt et al.31 report a

similar behaviour for InP nanowires, where nanowires with diameters ranging from 18.0-21.3

Å were studied. They suggest that for smaller diameter nanowires, the contribution of the

nanowire surface to the electronic properties is not negligible, compared to the contribution

for larger nanowires, leading to the deviation from the proportionality of the finite-depth

square-well model. When we actually fit the larger hexagonal (19.7 to 35.0 Å) and triangular

(12.7 to 25.5 Å) nanowires, we obtain x -values of 1.978 and 1.130, respectively, using DMol3,

and 1.427 and 0.979 using SIESTA. For the hexagonal wires, taking into account only the

larger diameter wires increases the x -value more towards the value of 2 obtained for the

simple square-well model; the corresponding values for the triangular wires only increase

slightly.

The implications of these results are that there is a clear relationship between the nanowire

diameter and its resulting band gap. This relationship can be exploited, as in a situation

where a certain band gap for a particular application or device is required, in that we “simply”

have to produce nanowires of correct corresponding diameter. It should of course be taken

into consideration that band gaps calculated using DFT are systematically underestimated.

Thus, in order to reproduce band gaps much closer to experimental values, more accurate

calculations would be required, such as using GW approach to predict quasiparticle band
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FIG. 11: Relative band gap as a function of 1/dx for saturated (A) hexagonal and (B) triangular

nanowires with SIESTA, and saturated (C) hexagonal and (D) triangular nanowires with DMol3,

where d is the nanowire diameter. The dashed lines indicate the linear regions for each of the data

sets. “Hex” and “Tri” represent “hexagonal” and “triangular”, respectively. Band gaps are relative

to the calculated bulk GaN band gap.

FIG. 12: Relative band gap as a function of 1/d2 for saturated (A) hexagonal and (B) triangular

nanowires, where d is the nanowire diameter. The dashed lines indicate the linear regions for each

of the data sets. “Hex” and “Tri” represent “hexagonal” and “triangular”, respectively. Band gaps

are relative to the calculated bulk GaN band gap.
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gaps.24,63,64

We calculate the effective mass, with respect to the free electron mass m0, around the

conduction band minimum (CBM) using the expression: ∆Ec (k) = ~2k2/2m∗
c where m∗

c

is the electron effective mass around the CBM. We fit a quadratic of the form y = mx2,

then solve m = ~2/2m∗
c . For bulk GaN, we calculate m∗

c to be 0.16m0 and 0.27m0 with

SIESTA and DMol3, respectively. These values are close to the reported experimental m∗
c

values of 0.20±0.02m0
65 and 0.22±0.02m0,66 and the values from theoretical calculations of

0.13m0,67 0.20m0,68,69 and 0.27m0.70 We also examine the effect of nanowire diameter on the

effective mass. For SIESTA, we calculate m∗
c values of 0.48m0 and 0.22m0 for 9.5 and 28.6 Å

diameter hexagonal wires, and 0.41m0 and 0.25m0 for 12.7 and 25.5 Å diameter triangular

wires, respectively. A similar trend in effective mass is also observed for DMol3 calculations,

with m∗
c decreasing as the nanowire diameter increases, approaching the bulk value. This

trend is quite intuative because as the diameter of the nanowire increases, the band gap gets

smaller, which leads to an increase in the curvature of the CBM around the Γ point and an

increase of m in the expression m = ~2/2m∗
c , thus leading to a smaller effective mass.

5. Formation energies

We now consider the heat of formation of hexagonal and triangular nanowires in the

[0001] direction, for both unsaturated and saturated nanowires. For the unsaturated case,

the heat of formation (per atom) is:

Ef =

{
E (xGaN)−

[
xE (Ga) +

x

2
E (N2)

]}

/ (2x) (1)

where E (xGaN) is the total energy of the relaxed unsaturated nanowire, x is the number

of GaN units in the supercell of the nanowire, E (Ga) is the energy of a gallium atom

obtained from the energy of bulk gallium metal and E (N2) is the energy of a nitrogen

molecule. We calculate the heat of formation (per atom) of saturated nanowires using the

following expression:
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FIG. 13: Relative heat of formation (per atom) as a function of nanowire diameter for unsatu-

rated and saturated nanowires in the [0001] direction, from (A) SIESTA and (B) DMol3. Energies

are relative to the heat of formation (per atom) of bulk GaN. “Hex” and “Tri” represent “hexago-

nal” and “triangular”, respectively, and “unsat” and “sat” represent “unsaturated” and “saturated”,

respectively.

Ef =

{
E

[
x (GaN) yH

]
−

[
xE (Ga) +

x

2
E (N2)

+
y

2
E (H2)

]}
/ (2x + y) (2)

where E [x (GaN) yH] is the total energy of the relaxed saturated nanowire, y is the

number of H atoms in the supercell of the saturated nanowire and E (H2) is the energy of a

hydrogen molecule.

The heat of formation (per atom) for unsaturated and saturated nanowires as a function

of nanowire diameter, are shown in Fig. 13. From Fig. 13, it can be seen that as the

diameter of the nanowires increase, the stability increases, as indicated by the lower heat of

formation, approaching the stability of that found in bulk GaN. For results within each code,

the hexagonal nanowires are more stable than triangular nanowires of the same size, con-

sistent with experimental findings. As mentioned previously, while triangular shaped [112̄0]

nanowires have been reported experimentally, nanowires with the [0001] growth direction

are typically reported to be hexagonally shaped. We note that the surface formation energy

of the unsaturated wires, Esurf
f = (Ewire − x ∗ EGaN) /Nsurf, where Ewire, EGaN and Nsurf are

the total energies of the wire and a bulk GaN stoichiometric unit, and the number of surface

atoms, respectively, exhibit a similar trend to the heat of formation. That is, a decrease
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with increasing wire diameter and a greater stability (lower surface formation energy) for the

hexagonal wires. For example, using DMol3 values of 0.56, 0.52, 0.51, 0.50 and 0.49 eV are

obtained for the hexagonal 9.5, 15.9, 19.7, 21.0 and 28.6 Å diameter nanowires, respectively.

For the triangular wires, the surface formation energies are 0.98, 0.56, 0.54 and 0.50 eV for

the 6.3, 12.7, 15.9 and 25.5 Å diameter nanowires, respectively. Similar trends with regard

to shape and a decrease in heat of formation with increasing wire diameter, are obtained for

saturated wires, although saturating nanowires with hydrogen stabilises the nanowires, as

indicated by the lower heat of formation for the same size wires. Once again, the SIESTA

and DMol3 codes produce similar results.

IV. CONCLUSIONS

We have examined the atomic and electronic structure and stability of hexagonal and

triangular GaN nanowires in the [0001] growth direction, and the influence of saturating

dangling bonds for a wide range of diameters (8 to 35 Å). The atomic relaxations of the

nanowires exhibit similar bond length and bond angle changes across the range of nanowire

diameters and shapes examined. For unsaturated wires, we found edge-induced dangling

bond states in the region of the band gap. The position of these states remain rather con-

stant with varying diameter size for both the hexagonal and triangular wires. Saturating

these dangling bonds with hydrogen removes the edge states from the band gap, such that

the band gap decreases with increasing nanowire diameter. For the unsaturated nanowires,

from consideration of the spatial distribution of the highest occupied state and lowest unoc-

cupied state, and atom-projected density of states, we found that the nitrogen 2p orbitals

contribute to the edge states at the valence band maximum and gallium 3p orbitals pre-

dominantly contribute to edge states at the conduction band minimum. We calculated the

effective electron mass for hexagonal and triangular wires and found that it decreases with

increasing diameter, approaching that of the bulk value. We examined the relationship be-

tween nanowire diameter (d) and band gap by fitting a 1/dx relationship, finding the x -value

for triangular wires is smaller than that for hexagonal wires. When plotted against a 1/d2

relationship, there is a close match for large diameter nanowires, however smaller diameter

nanowires deviate from this expression. The heat of formation of the nanowires decrease

with increasing diameter, approaching that of the bulk value.
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