106 research outputs found

    A Super-Oxidized Radical Cationic Icosahedral Boron Cluster

    Get PDF
    While the icosahedral closo-[B₁₂H₁₂]²⁻ cluster does not display reversible electrochemical behavior, perfunctionalization of this species via substitution of all 12 B–H vertices with alkoxy or benzyloxy (OR) substituents engenders reversible redox chemistry, providing access to clusters in the dianionic, monoanionic, and neutral forms. Here, we evaluated the electrochemical behavior of the electron-rich B₁₂(O-3-methylbutyl)₁₂ (1) cluster and discovered that a new reversible redox event that gives rise to a fourth electronic state is accessible through one-electron oxidation of the neutral species. Chemical oxidation of 1 with [N(2,4-Br₂C₆H₃)₃]·⁺ afforded the isolable [1]·⁺ cluster, which is the first example of an open-shell cationic B₁₂ cluster in which the unpaired electron is proposed to be delocalized throughout the boron cluster core. The oxidation of 1 is also chemically reversible, where treatment of [1]·⁺ with ferrocene resulted in its reduction back to 1. The identity of [1]·⁺ is supported by EPR, UV–vis, multinuclear NMR (¹H, ¹¹B), and X-ray photoelectron spectroscopic characterization

    A Super-Oxidized Radical Cationic Icosahedral Boron Cluster

    Get PDF
    While the icosahedral closo-[B₁₂H₁₂]²⁻ cluster does not display reversible electrochemical behavior, perfunctionalization of this species via substitution of all 12 B–H vertices with alkoxy or benzyloxy (OR) substituents engenders reversible redox chemistry, providing access to clusters in the dianionic, monoanionic, and neutral forms. Here, we evaluated the electrochemical behavior of the electron-rich B₁₂(O-3-methylbutyl)₁₂ (1) cluster and discovered that a new reversible redox event that gives rise to a fourth electronic state is accessible through one-electron oxidation of the neutral species. Chemical oxidation of 1 with [N(2,4-Br₂C₆H₃)₃]·⁺ afforded the isolable [1]·⁺ cluster, which is the first example of an open-shell cationic B₁₂ cluster in which the unpaired electron is proposed to be delocalized throughout the boron cluster core. The oxidation of 1 is also chemically reversible, where treatment of [1]·⁺ with ferrocene resulted in its reduction back to 1. The identity of [1]·⁺ is supported by EPR, UV–vis, multinuclear NMR (¹H, ¹¹B), and X-ray photoelectron spectroscopic characterization

    Rectangular Coordination Polymer Nanoplates: Large-Scale, Rapid Synthesis and Their Application as a Fluorescent Sensing Platform for DNA Detection

    Get PDF
    In this paper, we report on the large-scale, rapid synthesis of uniform rectangular coordination polymer nanoplates (RCPNs) assembled from Cu(II) and 4,4′-bipyridine for the first time. We further demonstrate that such RCPNs can be used as a very effective fluorescent sensing platform for multiple DNA detection with a detection limit as low as 30 pM and a high selectivity down to single-base mismatch. The DNA detection is accomplished by the following two steps: (1) RCPN binds dye-labeled single-stranded DNA (ssDNA) probe, which brings dye and RCPN into close proximity, leading to fluorescence quenching; (2) Specific hybridization of the probe with its target generates a double-stranded DNA (dsDNA) which detaches from RCPN, leading to fluorescence recovery. It suggests that this sensing system can well discriminate complementary and mismatched DNA sequences. The exact mechanism of fluorescence quenching involved is elucidated experimentally and its use in a human blood serum system is also demonstrated successfully

    Critical appraisal of advance directives given by patients with fatal acute stroke: an observational cohort study

    Get PDF
    Background: Advance directives (AD) imply the promise of determining future medical treatment in case of decisional incapacity. However, clinical practice increasingly indicates that standardized ADs often fail to support patients’ autonomy. To date, little data are available about the quality and impact of ADs on end-of-life decisions for incapacitated acute stroke patients. Methods: We analyzed the ADs of patients with fatal stroke, focusing on: (a) their availability and type, (b) stated circumstances to which the AD should apply, and (c) stated wishes regarding specific treatment options. Results: Between 2011 and 2014, 143 patients died during their hospitalization on our stroke unit. Forty-two of them (29.4%) had a completed and signed, written AD, as reported by their family, but only 35 ADs (24.5%) were available. The circumstances in which the AD should apply were stated by 21/35 (60%) as a “terminal condition that will cause death within a relatively short time” or an ongoing “dying process.” A retrospective review found only 16 of 35 ADs (45.7%) described circumstances that, according to the medical file, could have been considered applicable by the treating physicians. A majority of patients objected to cardiopulmonary resuscitation (22/35, 62.9%), mechanical ventilation (19/35, 54.3%), and artificial nutrition (26/35, 74.3%), while almost all (33/35, 94.3%) directed that treatment for alleviation of pain or discomfort should be provided at all times even if it could hasten death. Conclusions: The prevalence of ADs among patients who die from acute stroke is still low. A major flaw of the ADs in our cohort was their attempt to determine single medical procedures without focusing on a precise description of applicable scenarios. Therefore, less than half of the ADs were considered applicable for severe acute stroke. These findings stress the need to foster educational programs for the general public about advance care planning to facilitate the processing of timely, comprehensive, and individualized end-of-life decision-making

    Enhancing Cycling Stability of Tungsten Oxide Supercapacitor Electrodes via a Boron Cluster-Based Molecular Cross-Linking Approach

    No full text
    We report our discovery of utilizing perhydroxylated dodecaborate clusters ([B12(OH)12]2-) as a molecular cross-linker to generate a hybrid tungsten oxide material. We further demonstrate how these robust B12-based clusters in the resulting hybrid tungsten oxide material can effectively preserve the specific capacitance up to 4000 cycles and reduce the charge transfer resistance as well as the response time compared to that of pristine tungsten oxide. </div
    corecore