Supplementary Information

Photooxidative Generation of Dodecaborate-Based Weakly

Coordinating Anions

Jonathan C. Axtell^{1*}, Marco S. Messina^{1,2}, Jiyuan Liu³, Daria Galaktionova⁴, Josef Schwan⁵,

Tyler M. Porter⁶, Miles Savage¹, Alex I. Wixtrom¹, Arnold L. Rheingold⁶, Clifford P. Kubiak⁶,

Jay R. Winkler⁵, Harry B. Gray⁵, Petr Král^{4,7,8,*}, Anastassia N. Alexandrova^{1*}, Alexander M.

Spokoyny^{1,2,*}

^[1]Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States.

^[2] California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States.

^[3] Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysts, School of Molecular Science and Engineering, East China University of Science and Technology, Shanghai 200237 P.R. China

^[4] Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States

^[5] Beckman Institute, California Institute of Technology, Pasadena, California, 91115, United States

^[6] Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States

^[7] Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.

^[8] Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.

Corresponding Authors: <u>axtell@ucla.edu</u>; <u>spokoyny@chem.ucla.edu</u>; <u>pkral@uic.edu</u>; <u>ana@chem.ucla.edu</u>, <u>hbgray@caltech.edu</u>.

Table of Contents

General Considerations	S3
Synthetic Procedures	S4
Polymer Characterization Data.	S5
Polymer Metrics Table	S5
Computational Details	S26
Emission Spectroscopy	S45
Extinction Coefficient Measurements	S46
Crystallographic Details	S47

General Considerations. All commercially available chemicals were used as received unless otherwise stated. All polymerizations were prepared in the glovebox under nitrogen atmosphere unless otherwise stated. CH3CN used for oxidations of 1-3 was purified via a solvent purification system and kept in the glovebox. All monomers were degassed and stored with 4Å molecular sieves. 4-Vinylanisole (97%), 4-methylstyrene (96%), styrene ($\geq 99\%$), 4-fluorostyrene (99%), 4-*tert*-butylstyrene (93%), 4-chlorostyrene (97%), 3-chlorostyrene (98%), and 2,6-difluorostyrene (99%) were purchased from Sigma-Aldrich. Acetonitrile ($\geq 99.9\%$), dichloromethane ($\geq 99.5\%$), ethyl acetate ($\geq 99.5\%$), hexanes ($\geq 98.5\%$), methanol ($\geq 99.8\%$), N,N-diisopropylethylamine ($\geq 99\%$), and tetrabutylammonium hexafluorophosphate ($\geq 99.0\%$, electrochemical grade) were purchased from Sigma-Aldrich. Tetrabutylammonium hexafluorophosphate was further purified by recrystallization from ethanol and drying under vacuum at 90 °C and benzyl bromide (99%) was purchased from Alfa Aesar. Perfluorotoluene (TCI) was dried 72h over 3Å molecular sieves and degassed prior to use. [NBu4]₂B₁₂(OH)₁₂ was synthesized according to reported procedures.¹

NMR spectra were recorded using spectrometers at 400 or 500 MHz (¹H), 125 MHz (¹³C), 80 MHz (^{11}B) , and 282 MHz (^{19}F) reported in δ (parts per million) relative to tetramethylsilane $(^{1}H, ^{13}C)$, BF₃·Et₂O (¹¹B), and C₆H₅F (¹⁹F), respectively, and referenced to residual ¹H/¹³C signals of the deuterated solvent (¹H (δ) CDCl₃ 7.26; ¹³C (δ) CDCl₃ 77.16; ¹¹B (δ) BF₃·Et₂O 0.00 ppm; ¹⁹F (δ) C₆H₅F -113.15 ppm). Deuterated solvents (Cambridge Isotope Laboratories) for NMR spectroscopic analyses were stored over 4Å molecular sieves. ¹H NMR spectra were acquired with a relaxation of 2 s for small molecules and 30 s for polymers. Gel permeation chromatography (GPC) for all polymers was conducted on a Shimadzu HPLC Prominence-i system equipped with a UV detector, Wyatt DAWN Heleos-II Light Scattering detector, Wyatt Optilab T-rEX RI detector, one MZ-Gel SDplus guard column, and two MZ-Gel SDplus 100 Å 5µm 300x8.0 mm columns. Eluent was CHCl₃ or THF at 40 °C (flow rate: 0.70 mL/min), a dn/dc value of 0.160 was used for chloroform and 0.1828 was used for samples in THF. GPC chromatograms were analyzed using Astra 6.0 software. All GPC samples were dissolved in HPLC grade solvent at a concentration of 4-5 mg/mL and filtered through a 0.2 µm TFE filter. All reported molecular weight and dispersity data determined by GPC are the average of two runs unless otherwise noted. Mass spectrometry data was acquired using a Thermo ScientificTM O-ExactiveTM Plus instrument with a quadrupole mass filter and Orbitrap mass analyzer. UV-Vis spectra were recorded on a Hewlett-Packard 8453 diode array spectrometer. Extinction coefficients were determined through a series of 5 dilutions with a maximum absorption between 0.1 and 0.7 absorbance units. Microwave reactions were performed using a CEM Discover SP microwave synthesis reactor at 140 °C with the pressure release limit set to 250 psi (no reactions exceeded this limit to trigger venting) and the maximum wattage set to 250W (the power applied was dynamically controlled by the microwave instrument and did not exceed this limit for any reactions). Irradiation of photochemical polymerizations were performed utilizing a 120V Blue LED Custom Rope Light Kit 1/2" 2 wire 3 foot cable purchased from Novelty Lights, Inc. (Eaglewood, CO).

Note: 1^2 and 2^3 were previously synthesized using FeCl₃. An improved synthesis employing NOBF₄ as the oxidant is reported here and the resulting products are spectroscopically identical to those of the initial reports. The synthesis of **3** was recently published⁴ and is reported here for simplicity.

B₁₂(**OCH**₂C₆F₅)₁₂ (1). TBA₂[B₁₂(OH)₁₂] (2.00 g, 2.44 mmol) was transferred out of a nitrogen filled glovebox, opened to the air, and dissolved in 20 mL acetonitrile in an 80 mL glass microwave vial. *N*,*N*-diisopropylethylamine (8 mL, 45.93 mmol) and 2,3,4,5,6-pentafluorobenzyl bromide (12.0 mL, 79.45 mmol) were added along with a stir bar, the vial was sealed with the large vial attachment kit lid, and the mixture was heated at 140 °C with stirring in the microwave for 45 min. The volatiles were removed *via* rotary evaporation, and the resulting residue was loaded on a slurry-packed silica gel column with 65/35 hexanes/ethyl acetate eluent ratio. The excess reagents eluted first, and the pink/purple product mixture was eluted with acetone. The acetone was removed *via* rotary evaporation and the resulting residue (a mixture of [B₁₂(OCH₂C₆F₅)₁₂]²⁻ and [B₁₂(OCH₂C₆F₅)₁₂]¹⁻) was dissolved in minimal acetonitrile (~30 mL). NOBF₄ (0.67 g, 5.7 mmol) was added and the mixture was left to stir for 48 h. Following oxidation, the product was filtered and washed with cold CH₃CN (3 x 15 mL) and the yellow-orange solid was dried under high vacuum (5.22 g, 86%). ¹H NMR (500 MHz, CDCl₃): δ 5.23 (s, 24H). ¹³C NMR (125 MHz, CDCl₃): δ 60.1. ¹¹B NMR (160 MHz, CDCl₃): δ 40.9.

B₁₂(**OCH**₂**C**₇**H**₄**F**₃)₁₂ (2). TBA₂[B₁₂(OH)₁₂] (1.00 g, 1.22 mmol) was transferred out of a nitrogen filled glovebox, opened to the air, and dissolved in 10 mL acetonitrile in an 80 mL glass microwave vial. *N*,*N*-diisopropylethylamine (4.00 mL, 23.0 mmol) and 4-trifluoromethylbenzyl bromide (7.22mL, 46.7 mmol) were added along with a stir bar, the vial was sealed with the large vial attachment kit lid, and the mixture was heated at 140 °C with stirring in the microwave for 45 min. The volatiles were removed *via* rotary evaporation, and the resulting residue was loaded on a slurry-packed silica gel column with a 65/35 hexanes/ethyl acetate eluent ratio. The excess reagents eluted first, and the pink/purple product mixture was eluted with acetone. The acetone was removed *via* rotary evaporation and the resulting residue (a mixture of [B₁₂(OCH₂-4-CF₃-C₆H₄)₁₂]²⁻ and [B₁₂(OCH₂-4-CF₃-C₆H₄)₁₂]¹⁻) was dissolved in a minimal volume of acetonitrile (~15 mL). NOBF₄ (0.658 g, 5.63 mmol) was added and the mixture was left to stir for 24 h. The resulting mixture was then cooled at -30°C for 30min, and the red-orange solid was isolated *via* filtration, washed with cold CH₃CN, and dried under high vacuum (1.82 g, 69%). ¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, 24H, Ar), 7.09 (d, 24H, Ar), 5.27 (s, 24H, CH₂); ¹¹B NMR (160 MHz) 41.70; ¹⁹F NMR (282 MHz) -62.73.

B₁₂(OCH₂-3,5-(CF₃)₂-C₆H₃)₁₂ (3). TBA₂[B₁₂(OH)₁₂] (1.00 g, 1.22 mmol) was transferred out of a nitrogen filled glovebox, opened to the air, and dissolved in 10 mL acetonitrile in an 80 mL glass microwave vial. *N*,*N*-diisopropylethylamine (4 mL. 23.0 mmol) and 3.5bis(trifluoromethyl)benzyl bromide (8.0 mL, 44.0 mmol) were added along with a stir bar, the vial was sealed with the large vial attachment kit lid, and the mixture was heated at 140 °C with stirring in the microwave for 45 min. The volatiles were removed via rotary evaporation, and the resulting residue was loaded on a slurry-packed silica gel column with 65/35 hexanes/ethyl acetate eluent ratio. The excess reagents eluted first, and the pink/purple product mixture was eluted with acetone. The acetone was removed via rotary evaporation and the resulting residue (a mixture of $[B_{12}(OCH_2-3,5-(CF_3)_2-C_6H_3)_{12}]^{2-}$ and $[B_{12}(OCH_2-3,5-(CF_3)_2-C_6H_3)_{12}]^{1-})$ was dissolved in a minimal volume of acetonitrile (~15 mL). NOBF₄ (0.436 g, 3.73 mmol) was added and the mixture was left to stir for 24 h. Following oxidation, the red-orange solid was isolated via filtration, washed with cold CH₃CN (3 x 15 mL), and dried under high vacuum (2.93 g, 79%). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.80 (br s, 12H, Ar), 7.55 (br s, 24H, C₆H₃), 5.49 (s, 24H, CH₂). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂): δ 42.4. ¹⁹F NMR (282 MHz, CD₂Cl₂): δ -63.97 (s, 72F).

Representative Styrene Polymerization:

Styrene (0.05 mL, 0.435 mmol) was passed through activated basic alumina and added to a dram vial equipped with a magnetic stir bar. **1** (1.1 mg, 0.1 mol%) was then added. This mixture was dissolved in 219 μ L dichloromethane, affording a 2M solution of monomer. The dram vial was sealed with a polypropylene cap containing a Teflon coated septum and brought out of the glove box. The mixture was then irradiated with blue LED light (450 nm) while stirring for 4 hours at room temperature. For all reactions, the reaction setup is covered with aluminum foil to keep out ambient light. Once the polymerization was complete, the reaction was diluted with ~500 μ L dichloromethane and precipitated with cold methanol. The resulting suspension was transferred to a tared falcon tube and centrifuged for 5 minutes at 4,400 RPM. The supernatant was discarded, methanol was then added, stirred to solubilize any excess oxidant, and centrifuged again. The supernatant was discarded and the polymer was dried under vacuum.

Polymer Characterization Data

Note: Polymerizations of S1, S2, S3, and S5 in CH₂Cl₂ were previously reported.² **Table S1.** Summary of polymer data.

CH ₂ Cl ₂										
		2			1			3		
	$M_n(M_w)$ (kDa)	PDI	Yield (%)	M _n (M _w) (kDa)	PDI	Yield (%)	$M_n(M_w)$ (kDa)	PDI	Yield (%)	
64	6.90(13.3)	1.9	57	0.4	2.2	00	7.40(16.4)	2.2	86	
51	6.90(14.6)	2.1	65	8.4	2.3	90	7.70(17.1)	2.3	86	
	14.8(30.3)	2	89	170	2.4	00	12.3(21.5)	1.7	92	
52	15.5(30.3)	1.9	77	170	2.4	99	5.40(15.2)	2.8	62	
	53.2(130.6)	2.5	89	227	2.2	04	88.3(279.1)	3.2	94	
	103.4(266.6)	2.6	84	227	3.2	94	96.3(296.9)	3.1	89	
64	54.7(100.8)	1.8	88	138.18(305.8)	2.2	95	44(83.9)	1.9	91	
54	58.3(102.9)	1.8	85	141.64(300.7)	2.12	99	46(76.5)	1.7	98	
	137.5(358.1)	2.6	96				67.9(146.5)	1.9	99	
\$5	134.2(356.4)	2.7	90	76.9	2.6	98	82.1(171.8)	2.1	87	
	NA	NA	<1	6.48(9.6)	1.49	33	NA	NA	<1	
56	NA	NA	<1	6.71(9.9)	1.48	24	NA	NA	<1	
				1,2-F ₂	Ph					
		2		1				3		
	M _n (M _w) (kDa)	PDI	Yield (%)	M _n (M _w) (kDa)	PDI	Yield (%)	M _n (M _w) (kDa)	PDI	Yield (%)	
61	8.50(16.1)	1.9	81	19.3(40)	2.07	94	5.80(10.6)	1.8	85	
51	6.90(14.6)	2.1	87	20.2(42.7)	2.11	94	5.60(10.9)	1.9	77	
62	6.30(9.70)	1.5	61	25.6(59.9)	2.34	74	8.00(13.1)	1.6	85	
32	6.30(9.80)	1.6	69	32.7(70.5)	2.15	88	7.9(13.4)	1.7	83	
63	74.2(139.6)	1.9	40	73.7(129.0)	1.75	95	113.1(267.1)	2.4	97	
	54.8(124.3)	2.3	75	56.2(116.4)	2.07	Quant	47.5(121.4)	2.6	89	
54	62.8(113.3)	1.81	89	36.8(67.8)	1.84	88	50.46(97.8)	1.94	98	
34	60.7(109)	1.8	84	23.1(57.9)	2.51	99	39.49(83.7)	2.11	99	
\$5	56(79.4)	1.42	93	62.3(125.1)	2.01	Quant	52.4(82)	1.56	94	
	55.9(78.4)	1.4	89	75.5(130.5)	1.73	Quant	50.9(81.5)	1.6	95	
56	5.9(9.7)	1.63	25	6.1(10.4)	1.7	84%	7.68(8.6)	1.12	65	
50	4.4(8.1)	1.86	36	6.9(10.7)	1.56	85%	7.52(8.6)	1.14	80	

Polymerizations initiated by 1:

Figure S1. Styrene, 1,2-difluorobenzene.

Figure S2. 4-fluorostyrene, 1,2-difluorobenzene.

Figure S3. 4-chlorostyrene, 1,2-difluorobenzene.

Figure S4. 4-bromostyrene, CH₂Cl₂

Figure S5. 4-bromostyrene, 1,2-difluorobenzene.

Figure S6. 2,4,6-trimethylstyrene, 1,2-difluorobenzene.

Figure S7. 2-vinylnapthalene, CH₂Cl₂.

Figure S8. 2-vinylnapthalene, 1,2-difluorobenzene.

Polymerizations initiated by 2:

Figure S9. Styrene, CH₂Cl₂.

Figure S10. Styrene, 1,2-difluorobenzene.

Figure S11. 4-fluorostyrene, CH₂Cl₂.

Figure S12. 4-fluorostyrene, 1,2-difluorobenzene.

Figure S13. 4-chlorostyrene, CH₂Cl₂.

Figure S14. 4-chlorostyrene, 1,2-difluorobenzene.

Figure S15. 4-bromostyrene, 1,2-difluorobenzene.

Figure S16. 2,4,6-trimethylstyrene, 1,2-difluorobenzene.

Figure S17. 2-vinylnaphthalene, 1,2-difluorobenzene.

Figure S18. 4-bromostyrene, CH₂Cl₂.

Figure S19. 2,4,6-trimethylstyrene, CH₂Cl₂.

Polymerizations initiated by **3**:

Figure S20. Styrene, CH₂Cl₂.

Figure S21. Styrene, 1.2-difluorobenzene.

Figure S22. 4-fluorostyrene, CH₂Cl₂.

Figure S23. 4-fluorostyrene, 1,2-difluorobenzene.

Figure S24. 4-chlorostyrene, CH₂Cl₂.

Figure S25. 4-chlorostyrene, 1,2-difluorobenzene.

Figure S26. 4-bromostyrene, CH₂Cl₂.

Figure S27. 4-bromostyrene, 1,2-difluorobenzene.

Figure S28. 2,4,6-trimethylstyrene, CH₂Cl₂.

Figure S29. 2,4,6-trimethylstyrene, 1,2-difluorobenzene.

Figure S30. 2-vinylnaphthalene, 1,2-difluorobenzene.

Figure S31. Styrene, 3, 1,2-difluorobenzene, 1 equiv. [NBu4]BArF4.

Figure S32. Styrene, 1, CH₂Cl₂, 1 equiv. durene.

Figure S33. 4-bromostyrene, 1, CH₂Cl₂, 1 equiv. durene.

Figure S34. Styrene, 3, 1,2-difluorobenzene, 1 equiv. [NBu4][3].

Figure S35. Rates of conversion of styrene in the presence of **1** in CH₂Cl₂ and 1,2difluorobenzene. Aliquots were quenched with 50µL NEt₃/700µl CDCl₃. Hexamethyldisilane was used as an internal standard to measure conversion by ¹H NMR spectroscopy.

Figure S36. Timepoint analysis of the polymerization of S1 (red trace) and S4 (blue trace) initiated by 1 under standard reaction conditions.

Figure S37. GPC analysis of the polymerization of 2,4,6-trimethylstyrene initiated by **3** (0.1 mol%) in 1,2-difluorobenzene containing 0.1 mol% [NBu₄][**3**] under standard conditions.

Figure S38. ¹H NMR spectrum of the crude reaction mixture of **1** and 4-trifluoromethylstyrene in CDCl₃ after blue LED irradiation under standard conditions. Little to no oligomeric/polymeric products are observed. *Residual H₂O.

Representative MALDI data for polymerizations initiated by 1, 2, and 3. Analysis was carried out primarily to determine if polymers were terminated with the initiators. There is no indication that the initiators remain on the polymer chain ends. The best spectrum resolution was obtained for analysis of poly(2-vinylnapthalene) and end-group analysis suggests polymers terminated with an alkene, -OMe, -OH, and $-CH_3$. These are plausible pathways given the likely presence of adventitious water, polymer precipitation from methanol, chain transfer due to water or deprotonation vicinal to the cationic chain end site.

Figure S39. 1, 2,4,6-trimethylstyrene, 1,2-difluorobenzene

Figure S40. 2, 2-vinylnaphthalene, 1,2-difluorobenzene

Figure S41. 3, 2-vinylnaphthalene, 1,2-difluorobenzene

Figure S42. Representative ${}^{1}H$ NMR of poly-(2-vinylnaphthalene) in CDCl₃. * (residual monomer)

Figure S43. Representative ¹³C NMR of poly (2-vinylnaphthalene) in CDCl₃. * (residual monomer)

Computational Details.

TD-DFT Simulations (Figure 3)

All the density functional theory (DFT) calculations were performed by Turbomole⁵, using the τ dependent gradient-corrected functional of Tao, Perdew, Staroverov, and Scuseria (TPSS)⁶ with the def2-TZVP^{7,8} basis set. All the time-dependent DFT(TD-DFT) results and molecular orbital energies were gained from Gaussian 099 program by using hybrid functional of TPSS(TPSSh)^{6,10} with the cc-pvdz^{11,12} basis set. Visualization for electronic and structural analysis (VESTA)¹³[9] was also used for visualization.

Electronic transitions within 1, 2, and 3 investigated by the TD-DFT calculations showing the excited states and the corresponding molecular orbital energies.

Table S2. Electronic Excited States of 1							
Excited	Excitation	Adsorption	Oscillator	MO origin	Contribution		
States	Energy/e	Wavelength/nm	Strength		of each MO		
No.	V						
5	1.5638	792.84	0.0051	HOMO-4-	0.992		
				>LUMO			
6	1.5722	788.59	0.0019	HOMO-5-	0.981		
				>LUMO			
8	1.6309	760.22	0.0024	HOMO-7-	0.989		
				>LUMO			
9	1.6353	758.19	0.0046	HOMO-8-	0.957		
				>LUMO			

10	1.6608	746.55	0.0021	HOMO-9- >LUMO	0.980
12	1.7332	715.33	0.0025	HOMO-11-	0.953
16	1 8210	680 51	0.0115	PLUMU HOMO 21	0.025
10	1.0219	000.31	0.0115	>UIMO	0.023
				HOMO-15-	0 884
				>LUMO	0.001
19	1.9021	651.81	0.0080	HOMO-18-	0.983
				>LUMO	
20	1.9265	643.57	0.0018	HOMO-19-	0.974
				>LUMO	
22	2.0047	618.46	0.0017	НОМО-23-	0.045
				>LUMO	
				НОМО-22-	0.232
				>LUMO	
				НОМО-21-	0.662
				>LUMO	
23	2.0345	609.40	0.0153	HOMO-25-	0.041
				>LUMO	
				HOMO-22-	0.735
				>LUMO	0 101
				HOMO-21-	0.181
	2 1125	596 61	0.0017	ZUMO 25	0.129
25	2.1155	380.04	0.0017	$\rightarrow UMO$	0.128
				$POMO_24_$	0 796
				>LUMO	0.790
				HOMO-23-	0.039
				>LUMO	0.002
26	2.1896	566.24	0.0082	НОМО-26-	0.444
				>LUMO	
				НОМО-25-	0.498
				>LUMO	
				НОМО-24-	0.027
				>LUMO	
27	2.2381	553.98	0.0012	НОМО-27-	0.953
				>LUMO	
				НОМО-26-	0.029
				>LUMO	
28	2.3733	522.41	0.0807	НОМО-29-	0.388
				>LUMO	0.000
				HUMU-28-	0.222
				>LUMU	0.201
					0.201
				~LUNIU	

				НОМО-25-	0.096
				>LUMO	
				HOMO-21-	0.020
				>LUMO	
29	2.4338	509.42	0.0757	НОМО-29-	0.414
				>LUMO	
				HOMO-28-	0.539
				>LUMO	

30	2.5031	495.32	0.1628	НОМО-29-	0.163
				>LUMO	
				HOMO-28-	0.206
				>LUMO	
				HOMO-27-	0.021
				>LUMO	
				HOMO-26-	0.254
				>LUMO	
				НОМО-25-	0.159
				>LUMO	
				HOMO-24-	0.047
				>LUMO	
				НОМО-23-	0.029
				>LUMO	
				HOMO-21-	0.046
				>LUMO	
				HOMO-15-	0.028
				>LUMO	
31	2.7756	446.70	0.0115	HOMO-37-	0.034
				>LUMO	
				HOMO-30-	0.944
				>LUMO	
32	2.9055	426.72	0.0130	НОМО-36-	0.053
				>LUMO	
				HOMO-31-	0.916
				>LUMO	
33	3.0581	405.43	0.0010	НОМО-32-	0.977
				>LUMO	

MOs	Energy/e	MOs	Energy/e	MOs	Energy/e	MOs	Energy/e
	V		V		V		V
HOMO-	-9.14	HOMO-	-8.05	HOMO-	-7.12	HOMO-	-6.81
42		30		18		6	

HOMO-	-9.12	HOMO-	-7.61	HOMO-	-7.11	HOMO-	-6.78
41		29		17		5	
HOMO-	-9.10	HOMO-	-7.56	HOMO-	-7.07	HOMO-	-6.77
40		28		16		4	
HOMO-	-9.08	HOMO-	-7.46	HOMO-	-7.01	HOMO-	-6.74
39		27		15		3	
HOMO-	-9.05	HOMO-	-7.43	HOMO-	-7.01	HOMO-	-6.70
38		26		14		2	
HOMO-	-8.74	HOMO-	-7.37	HOMO-	-6.99	HOMO-	-6.31
37		25		13		1	
HOMO-	-8.71	HOMO-	-7.33	HOMO-	-6.98	HOMO	-6.19
36		24		12			
HOMO-	-8.42	HOMO-	-7.31	HOMO-	-6.95	LUMO	-4.99
35		23		11			
HOMO-	-8.37	HOMO-	-7.25	HOMO-	-6.92	LUMO+	-2.18
34		22		10		1	
HOMO-	-8.31	HOMO-	-7.22	HOMO-	-6.87		
33		21		9			
HOMO-	-8.23	HOMO-	-7.16	HOMO-	-6.85		
32		20		8			
HOMO-	-8.18	HOMO-	-7.14	HOMO-	-6.84		
31		19		7			

 Table S4. Excited States of 2

Excited States No.	Excitation Energy/eV	Adsorption Wavelength/nm	Oscillator Strength	MO origin	Contribution of each MO
4	1.8825	658.62	0.0245	HOMO-4-	
				>LUMO	0.642
				HOMO-3-	
				>LUMO	0.348
5	1.9189	646.13	0.0490	HOMO-6-	
				>LUMO	0.052
				HOMO-4-	
				>LUMO	0.329
				HOMO-3-	
				>LUMO	0.565
6	1.9629	631.65	0.0096	HOMO-7-	
				>LUMO	0.032
				HOMO-5-	
				>LUMO	0.930
7	2.0076	617.57	0.0116	HOMO-7-	
				>LUMO	0.351
				HOMO-6-	
				>LUMO	0.579

				HOMO-5-	
				>LUMO	0.031
8	2.0283	611.27	0.0153	HOMO-7-	
				>LUMO	0.595
				HOMO-6-	
				>LUMO	0.318
9	2.0640	600.70	0.0020	HOMO-8-	
				>LUMO	0.991
10	2.1018	589.90	0.0018	HOMO-10-	
				>LUMO	0.053
				HOMO-9-	
				>LUMO	0.900
12	2.1296	582.21	0.0014	HOMO-11-	
				>LUMO	0.860
				HOMO-10-	
				>LUMO	0.126
13	2.1426	578.67	0.0060	HOMO-13-	
				>LUMO	0.101
				HOMO-12-	
				>LUMO	0.875
16	2.1838	567.74	0.0036	HOMO-15-	
				>LUMO	0.305
				HOMO-14-	
				>LUMO	0.670
17	2.2069	561.81	0.0015	HOMO-18-	
				>LUMO	0.061
				HOMO-17-	
				>LUMO	0.056
				HOMO-16-	
				>LUMO	0.753
				HOMO-15-	
				>LUMO	0.050
				HOMO-14-	
				>LUMO	0.036
19	2.2523	550.48	0.0101	HOMO-19-	
				>LUMO	0.726
				HOMO-18-	
				>LUMO	0.216
20	2.2551	549.79	0.0071	НОМО-22-	
				>LUMO	0.070
				НОМО-20-	
				>LUMO	0.111
				HOMO-19-	
				>LUMO	0.257
				HOMO-18-	
				>LUMO	0.490

21	2.2840	542.84	0.0021	НОМО-22-	
				>LUMO	0.122
				HOMO-21-	
				>LUMO	0.343
				HOMO-20-	
				>LUMO	0 469
				HOMO-18-	0.109
				>LUMO	0.045
				> LOWO	0.045
22	2.2886	541.74	0.0023	НОМО-22-	
				>LUMO	0.029
				HOMO-21-	
				>LUMO	0.640
				HOMO-20-	
				>LUMO	0.323
23	2.3381	530.29	0.0078	НОМО-26-	
				>LUMO	0.022
				НОМО-23-	
				>LUMO	0.699
				НОМО-22-	
				>LUMO	0.218
24	2.3584	525.70	0.0071	НОМО-28-	
				>LUMO	0.036
				HOMO-26-	
				>LUMO	0.077
				HOMO-24-	
				>LUMO	0.586
				НОМО-23-	
				>LUMO	0.089
				НОМО-22-	
				>LUMO	0 160
25	2.3914	518.46	0.0046	НОМО-25-	01100
-0	,	• • • • • •	0.0010	>LUMO	0 849
				HOMO-24-	0.019
				>LUMO	0.075
				НОМО-23-	0.070
				>LUMO	0.025
				НОМО-22-	0.020
				>LUMO	0.024
26	2,4179	512 77	0.0113	HOMO-28-	
_0	/		5.0112	>LUMO	0 150
				HOMO-27-	0.100
				>LUMO	0.029
				HOMO-26-	0.02/
				>LUMO	0 714
					0.717

				HOMO-25-	
				>LUMO	0.032
				HOMO-24-	
				>LUMO	0.058
28	2.4689	502.18	0.0930	HOMO-28-	
				>LUMO	0.450
				НОМО-27-	
				>LUMO	0.025
				НОМО-25-	
				>LUMO	0.076
				HOMO-24-	
				>LUMO	0.224
				НОМО-23-	
				>LUMO	0.102
				HOMO-22-	
				>LUMO	0.070
29	2.5296	490.14	0.0949	НОМО-29-	
				>LUMO	0.527
				HOMO-28-	
				>LUMO	0.099
				HOMO-26-	
				>LUMO	0.088
				HOMO-25-	
				>LUMO	0.023
				HOMO-24-	
				>LUMO	0.035
				НОМО-23-	
				>LUMO	0.023
				HOMO-22-	
				>LUMO	0.085
				HOMO-18-	
				>LUMO	0.027
30	2.6116	474.74	0.1162	НОМО-29-	
				>LUMO	0.430
				HOMO-28-	
				>LUMO	0.149
				НОМО-26-	
				>LUMO	0.050
				НОМО-23-	
				>LUMO	0.033
				HOMO-22-	0.1.71
				>LUMO	0.151
				HOMO-18-	
				>LUMO	0.041
				HOMO-3-	
				>LUMO	0.024

31	2.9497	420.33	0.0236	НОМО-37-	
				>LUMO	0.036
				HOMO-30-	
				>LUMO	0.929
32	3.0419	407.59	0.0401	HOMO-36-	
				>LUMO	0.068
				HOMO-31-	
				>LUMO	0.878
33	3.1796	389.93	0.0025	HOMO-35-	
				>LUMO	0.021
				HOMO-34-	
				>LUMO	0.047
				НОМО-33-	
				>LUMO	0.022
				НОМО-32-	
				>LUMO	0.880

 Table S5. Energy of molecular orbitals in 2

MOs	Energy/e	MOs	Energy/e	MOs	Energy/e	MOs	Energy/e
	V		V		V		V
HOMO-		HOMO-		HOMO-	-7.50	HOMO	
37	-8.97	27	-7.72	17		-7	-7.31
HOMO-		HOMO-		HOMO-	-7.49	HOMO	
36	-8.87	26	-7.7	16		-6	-7.27
HOMO-		HOMO-		HOMO-	-7.47	HOMO	
35	-8.55	25	-7.69	15		-5	-7.25
HOMO-		HOMO-		HOMO-	-7.46	HOMO	
34	-8.52	24	-7.66	14		-4	-7.17
HOMO-		HOMO-		HOMO-	-7.45	HOMO	
33	-8.48	23	-7.62	13		-3	-7.15
HOMO-	-8.41	HOMO-	-7.60	HOMO-	-7.43	HOMO	-6.88
32		22		12		-2	
HOMO-	-8.36	HOMO-	-7.57	HOMO-	-7.41	HOMO	-6.43
31		21		11		-1	
HOMO-	-8.28	HOMO-	-7.56	HOMO-	-7.41	HOMO	-6.38
30		20		10			
HOMO-	-7.80	HOMO-	-7.53	HOMO-	-7.39	LUMO	-5.07
29		19		9			
HOMO-	-7.73	HOMO-	-7.52	HOMO-	-7.36		
28		18		8			

 Table S6. Excited States of 3

Excited States No.	Excitation Energy/e V	Adsorption Wavelength/n m	Oscillator Strength	MO origin	Contributio n of each MO
4	1.8577	667.41	0.0383	НОМО-3-	0.989
				>LUMO	
6	1.9587	632.98	0.0465	HOMO-6-	0.151
				>LUMO	
				HOMO-5-	0.036
				>LUMO	
				HOMO-4-	0.801
				>LUMO	
7	2.0324	610.03	0.0260	HOMO-12-	0.033
				>LUMO	
				HOMO-11-	0.073
				>LUMO	
				HOMO-6-	0.758
				>LUMO	
				HOMO-4-	0.113
				>LUMO	
10	2.1228	584.07	0.0016	HOMO-10-	0.191
				>LUMO	
				HOMO-9-	0.388
				>LUMO	
				HOMO-8-	0.416
				>LUMO	
12	2.1876	566.76	0.0074	HOMO-12-	0.570
				>LUMO	0.400
				HOMO-11-	0.420
12	2 2056	5 (0, 10	0.0011	>LUMO	0.0(7
13	2.2056	562.12	0.0011	HOMO-13-	0.96/
1/	2 2025	520.40	0.0214	>LUMO 25	0.024
10	2.3025	538.48	0.0314	HUMO-25-	0.024
				>LUMO 22	0 127
					0.137
				$\sim LOMO$	0.048
					0.048
				\sim LUNIO	0 185
				$\sim 10 \text{MO}$	0.165
				+ 10100	0 208
				> $IIMO$	0.200
				HOMO-11-	0 289
				>LUMO	0.207
				HOMO-6-	0.025
				>LUMO	0.025

17	2.3061	537.64	0.0158	HOMO-22- >LUMO	0.048
				HOMO-16-	0.799
				>LUMO	
				HOMO-12-	0.051
				>LUMO	
				HOMO-11-	0.047
				>LUMO	
18	2.3176	534.97	0.0013	HOMO-17-	0.962
				>LUMO	
19	2.3498	527.64	0.0178	НОМО-23-	0.035
				>LUMO	
				НОМО-22-	0.028
				>LUMO	
				HOMO-18-	0.894
				>LUMO	
22	2.3821	520.49	0.0050	НОМО-23-	0.102
				>LUMO	
				НОМО-22-	0.069
				>LUMO	
				HOMO-21-	0.096
				>LUMO	
				НОМО-20-	0.702
				>LUMO	
24	2.4326	509.69	0.0015	НОМО-25-	0.775
				>LUMO	
				HOMO-24-	0.022
				>LUMO	
				НОМО-23-	0.046
				>LUMO	
				НОМО-22-	0.143
				>LUMO	

25	2.4387	508.4	0.0486	HOMO-27->LUMO	0.044
				HOMO-24->LUMO	0.033
				HOMO-23->LUMO	0.444
				HOMO-22->LUMO	0.242
				HOMO-20->LUMO	0.123
				HOMO-12->LUMO	0.024
				HOMO-11->LUMO	0.046
27	2.5033	495.28	0.0326	HOMO-29->LUMO	0.042
				HOMO-27->LUMO	0.642
				HOMO-25->LUMO	0.050
				HOMO-23->LUMO	0.148
				HOMO-22->LUMO	0.057
28	2.5159	492.81	0.0050	HOMO-28->LUMO	0.877
				HOMO-27->LUMO	0.068
29	2.5791	480.73	0.0944	HOMO-29->LUMO	0.133
				HOMO-28->LUMO	0.098
				HOMO-27->LUMO	0.230
				HOMO-25->LUMO	0.077
				HOMO-23->LUMO	0.058
				HOMO-22->LUMO	0.166
				HOMO-18->LUMO	0.032
				HOMO-12->LUMO	0.063
				HOMO-11->LUMO	0.067
				HOMO-6->LUMO	0.031
30	2.6246	472.39	0.0804	HOMO-29->LUMO	0.796
				HOMO-25->LUMO	0.023
				HOMO-23->LUMO	0.053
				HOMO-22->LUMO	0.049
31	2.9317	422.91	0.0258	HOMO-37->LUMO	0.037
				HOMO-31->LUMO	0.051
				HOMO-30->LUMO	0.877
32	3.0001	413.27	0.0233	HOMO-36->LUMO	0.088
				HOMO-35->LUMO	0.033
				HOMO-31->LUMO	0.805
				HOMO-30->LUMO	0.051

MOs	Energy/eV	MOs	Energy/eV	MOs	Energy/eV	MOs	Energy/eV
HOMO-	-9.64	HOMO-	-8.66	HOMO-	-8.05	HOMO-	-7.80
41		30		19		8	
HOMO-	-9.61	HOMO-	-8.28	HOMO-	-8.04	HOMO-	-7.75
40		29		18		7	
HOMO-	-9.57	HOMO-	-8.22	HOMO-	-8.01	HOMO-	-7.68
39		28		17		6	
HOMO-	-9.45	HOMO-	-8.21	HOMO-	-8.00	HOMO-	-7.63
38		27		16		5	
HOMO-	-9.33	HOMO-	-8.16	HOMO-	-7.95	HOMO-	-7.62
37		26		15		4	
HOMO-	-9.16	HOMO-	-8.14	HOMO-	-7.94	HOMO-	-7.53
36		25		14		3	
HOMO-	-8.96	HOMO-	-8.12	HOMO-	-7.92	HOMO-	-7.26
35		24		13		2	
HOMO-	-8.96	HOMO-	-8.11	HOMO-	-7.90	HOMO-	-6.78
34		23		12		1	
HOMO-	-8.82	HOMO-	-8.11	HOMO-	-7.89	HOMO	-6.77
33		22		11			
HOMO-	-8.81	HOMO-	-8.08	HOMO-	-7.83	LUMO	-5.48
32		21		10			
HOMO-	-8.75	HOMO-	-8.08	HOMO-9	-7.81		
31		20					

 Table S7. Energy of molecular orbitals in 3

Table S8. Ionization energies of styrene, 4-methylstyrene, 4-chlorostyrene, and 2,4,6-trimethylstyrene.

		Gas/eV	Solution@CH ₂ Cl ₂ /eV		
	Vertical	Adiabatic	Vertical	Adiabatic	
Styrene	8.12	7.99	6.33	6.21	
4-CH3-Styrene	7.82	7.69	6.14	6.01	
4-Cl-Styrene	8.02	7.89	6.30	6.16	
2,4,6-Me ₃ -Styrene	7.66	7.48	5.98	5.90	

Table S9. Electron Affinities of pentafluorobenzene, 1,3-bis(trifluoromethyl)benzene, and benzotrifluoride

G	as/eV	Liquid/eV		
Vertical	Adiabatic	Vertical	Adiabatic	

Pentafluorobenzene	-0.95	0.13	0.89	1.98
1,3-(CF ₃) ₂ -C ₆ H ₄	-0.39	0.26	1.35	1.93
Benzotrifluoride	-0.79	-0.41	1.20	1.59

Theoretical Modeling of the Systems (Figure 5 in the text).

The studied systems were modeled by classical and quantum molecular dynamics simulations and ab initio electronic structure methods. In order to find proper positions of molecules for molecular orbital overlap studies, resulting in the electron transfer between 1 - 3 and styrene, classical atomistic molecular dynamic simulations (MD) were performed of the frozen optimized dodecaborane cluster 1 (B3LYP/6-31gs) and 3 styrene molecules in an explicit solvent (CH₂Cl₂ and CH₃CN). The classical MD simulations were performed with NAMD¹⁴ in an NPT ensemble with P = 1 bar and T = 300 K, using a Langevin dynamics with a damping constant of 1 ps⁻¹ and a time step of 2 fs. Nonbonding interactions were calculated using a cutoff distance of 10 Å and long-range electrostatic interactions were calculated using the PME method¹⁵ in the presence of periodic boundary conditions. Molecular force field parameters were obtained from the CHARMM general force field.^{16,17} Ab Initio molecular dynamic simulations were performed using an NVT ensemble at T=300 K using a Langevin thermostat and a time step of 0.5 fs. A polarizable continuum model (PCM) (ϵ (CH₂Cl₂) = 8.93, ϵ (CH₃CN) = 36.64) and hybrid (molecules within 8 Å of dodecaborane cluster 1 are treated explicitly placed within implicit shell of the solvent) solvation were implemented. After classical MD simulations, a sphere of a radius 8 Å was cut around the cluster, including one styrene molecule in a co-facial interaction with one cluster ligand and several solvent molecules around it. Electronic absorption spectra were calculated to access the energies of the molecular orbitals (MOs). The time-dependent DFT (TD-DFT)/B3LYP method with 6-31g* basis set was used for the calculation of the excited states energies. The quantum chemical calculations used in this analysis were performed with TERAChem¹⁸ and visualization was done with VMD¹⁹.

Supplementary Movie 1 | Atomistic molecular dynamics simulation of dodecaborane 1 and 3 styrene residues at room temperature in explicit CH_3CN (deleted for clarity). The movie is attached separately.

Supplementary Movie 2 | Atomistic molecular dynamics simulation of dodecaborane 1 and 3 styrene residues at room temperature in explicit CH_2Cl_2 (deleted for clarity). The movie is attached separately.

Electronic spectra were calculated by a TD-DFT method, as described above. Some important features are shown for the transitions with a transition dipole moment larger than 1 (see below). All the studied transitions go to LUMO. In the case of CH_3CN , only a small overlap in the co-facial position between dodecaborane 1 and styrene was observed. On the other hand, calculations in CH_2Cl_2 resulted in a strong overlap for the co-facial and edge-on positions. These interactions could be the key for proposed mechanism and result in more efficient electron transfer and polymerization initiation.

Table S10. Character of Excited states CH₃CN PCM (Snapshot 2141)

Wavelength,	Excitation	Oscillator	Molecular	Representation
nm	Energy, eV	strength, f	Orbitals	
410	3.02	0.1592	HOMO-27	
397	3.11	0.0937	HOMO-29	

CH₃CN Hybrid (Snapshot 2141)

Wavelength, Excitation nm Energy, eV	Oscillator strength, f	Molecular Orbitals	Representation
---	--------------------------	-----------------------	----------------

457	2.71	0.1233	HOMO-27	
420	2.95	0.2168	HOMO-28	
409	3.03	0.1074	HOMO-29	
383	3.23	0.0800	HOMO-30	

CH₂Cl₂ PCM (Snapshot 43)

Wavelength, nm	Excitation Energy, eV	Oscillator strength, <i>f</i>	Molecular Orbitals	Representation
nm 460	2.69	0.1588	HOMO-27	
443	2.79	0.0876	НОМО-29	
432	2.86	0.0565	HOMO-30	

425	2.91	0.1795	HOMO-28	
				7

CH₂Cl₂Hybrid (Snapshot 43)

0112012119011 u	(Shupshot 15)	,	1	I
Wavelength,	Excitation	Oscillator	Molecular	Representation
nm	Energy,	strength, f	Orbitals	
	eV			
465	2.66	0.1049	HOMO-27	
430	2.88	0.0733	НОМО-29	

422	2.93	0.2687	HOMO-28	

CH₂Cl₂ PCM (Snapshot 2705)

Wavelength,	Excitation	Oscillator	Molecular	Representation
nm	Energy, eV	strength, f	Orbitals	
444	2.79	0.1450	HOMO-28	
426	2.91	0.2000	HOMO-27	

416	3 01	0 1 3 8 6	HOMO-29	
110	5.01	0.1500	1101110 2)	
1	1	1	1	

CH₂Cl₂ Hybrid (Snapshot 2705)

Wavelength, nm	Excitation Energy, eV	Oscillator strength, f	Molecular Orbitals	Representation
438	2.83	0.0875	НОМО-29	
432	2.86	0.1401	HOMO-28	

Emission Spectroscopy.

Steady-state fluorescence was measured in perfluorotoluene glass at 77K. Samples were prepared in quartz spectroscopy tubes (ID = 3 mm, OD = 4 mm) under argon atmosphere and rapidly frozen by immersion of the sample tube in liquid nitrogen. A 457.9 nm excitation source (Coherent Innova 70 argon-ion laser) was directed at a quartz immersion Dewar containing the sample. Luminescence was passed to a Melles Griot 13 FOS 200 Spectrometer through an optical fiber. A 457.9 nm long-pass cutoff filter was used to exclude excitation light.

Figure S44. Emission data collected for 1 - 3 in C₇F₈ at 77K.

The reduction potentials of photo-excited 1 - 3 were approximated²⁰ using in Eq. 1,

$$E_{red}^{* 0} = E_{red}^{0} + E_{0,0} \tag{1}$$

where E_{red}^{0} represents the ground state 0/1- redox couple of and $E_{0,0}$ represents the wavelength of the onset of fluorescence. Redox values are initially calculated based on the Fc/Fc⁺ reference and converted to SCE based on values reported by Connelly and Geiger,²¹ where the formal potential of Fc/Fc⁺ referenced to SCE in CH₃CN with [NBu₄][PF₆] as the supporting electrolyte is 0.40 V.

ε = 19,890 M⁻¹cm⁻¹

ε = 18,167 M⁻¹cm⁻¹

 λ = 450.0635 nm

 Concentration (M) Absorbance (A.U.)

 1.31E-05
 0.2244

 1.64E-05
 0.2884

 1.97E-05
 0.3468

 2.30E-05
 0.4043

 2.62E-05
 0.4644

Crystallographic Information

C108 H60 B12 F72 O12	
3047.28	
100.0 K	
0.71073 Å	
Triclinic	
P-1	
a = 14.1766(8) Å	$\alpha = 68.715(2)^{\circ}$.
b = 14.8867(9) Å	$\beta = 86.112(2)^{\circ}$.
c = 15.5797(10) Å	$\gamma = 76.641(2)^{\circ}$.
2980.3(3) $Å^3$	•
1	
1.698 Mg/m ³	
0.183 mm ⁻¹	
1512	
0.3 x 0.3 x 0.1 mm ³	
1.403 to 28.321°.	
-18<=h<=18, -19<=k<=19, -20	<=l<=18
52159	
14805 [R(int) = 0.0483]	
100.0 %	
Semi-empirical from equivalen	ts
0.0962 and 0.0626	
Full-matrix least-squares on F ²	
14805 / 0 / 947	
1.051	
R1 = 0.0550, wR2 = 0.1414	
R1 = 0.0701, $wR2 = 0.1556$	
n/a	
1.268 and -0.885 e.Å ⁻³	
	C108 H60 B12 F72 O12 3047.28 100.0 K 0.71073 Å Triclinic P-1 a = 14.1766(8) Å b = 14.8867(9) Å c = 15.5797(10) Å $2980.3(3) Å^3$ 1 $1.698 Mg/m^3$ $0.183 mm^{-1}$ 1512 $0.3 x 0.3 x 0.1 mm^3$ $1.403 to 28.321^\circ.$ -18 <= h <= 18, -19 <= k <= 19, -20 52159 14805 [R(int) = 0.0483] 100.0 % Semi-empirical from equivalent 0.0962 and $0.0626Full-matrix least-squares on F214805 / 0 / 9471.051R1 = 0.0550, wR2 = 0.1414R1 = 0.0701, wR2 = 0.1556n/a1.268$ and -0.885 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **3**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
F(1)	3165(1)	29(1)	7396(1)	45(1)
F(2)	3506(1)	750(1)	8265(1)	42(1)
F(3)	2114(1)	364(1)	8358(1)	54(1)
F(4)	231(2)	3805(2)	7624(1)	79(1)
F(5)	-429(1)	3830(2)	6461(2)	96(1)
F(6)	402(2)	4878(1)	6369(2)	97(1)
F(7)	2723(1)	9081(1)	6041(1)	45(1)
F(8)	2637(1)	7979(1)	7354(1)	43(1)
F(9)	1533(1)	9322(1)	6922(1)	56(1)

F(10)	-1477(1)	7566(2)	5978(2)	68(1)
F(11)	-1440(1)	9009(3)	5929(3)	150(2)
F(12)	-1329(1)	8661(2)	4702(2)	81(1)
F(13)	196(1)	7311(2)	508(2)	116(1)
F(14)	395(2)	8693(3)	408(3)	171(2)
F(15)	641(1)	8241(2)	-728(1)	69(1)
F(16)	4265(2)	7743(2)	-1152(1)	76(1)
F(17)	4118(2)	6291(2)	-906(1)	77(1)
F(18)	5121(1)	6543(2)	-106(1)	91(1)
F(19)	8107(1)	8600(1)	-94(1)	36(1)
F(20)	7124(1)	8282(1)	-882(1)	37(1)
F(21)	8655(1)	7709(1)	-921(1)	41(1)
F(22)	9493(1)	4215(1)	721(1)	42(1)
F(23)	9375(1)	3805(1)	2186(1)	47(1)
F(24)	8290(1)	3618(1)	1422(1)	54(1)
F(25)	9399(1)	1590(2)	7152(2)	79(1)
F(26)	9363(1)	589(1)	6506(1)	54(1)
F(27)	9578(1)	64(2)	7952(2)	134(2)
F(28)	6816(1)	770(1)	9936(1)	40(1)
F(29)	5976(1)	-130(1)	9656(1)	36(1)
F(30)	5388(1)	1426(1)	9318(1)	35(1)
F(31)	1672(1)	4813(1)	2343(1)	56(1)
F(32)	2164(1)	4985(1)	972(1)	55(1)
F(33)	1413(1)	3833(1)	1693(1)	55(1)
F(34)	4855(8)	459(6)	3050(20)	196(12)
F(34')	4498(4)	593(4)	2458(3)	65(1)
F(35)	3996(13)	604(5)	4177(6)	121(6)
F(35')	4897(4)	415(3)	3787(3)	69(2)
F(36)	3328(9)	689(7)	3004(8)	79(3)
F(36')	3424(3)	555(4)	3470(6)	87(3)
O(1)	2984(1)	6485(1)	4729(1)	19(1)
O(2)	4151(1)	5974(1)	2974(1)	19(1)
O(3)	6470(1)	5509(1)	3391(1)	20(1)
O(4)	5464(1)	3600(1)	3874(1)	20(1)
O(5)	4977(1)	2744(1)	5997(1)	20(1)
O(6)	3221(1)	4338(1)	4549(1)	20(1)
C(1)	3149(1)	3331(1)	4725(1)	22(1)

C(2)	2596(1)	2966(1)	5601(1)	22(1)
C(3)	2910(2)	2027(2)	6247(1)	25(1)
C(4)	2390(2)	1706(2)	7054(1)	27(1)
C(5)	1566(2)	2318(2)	7229(1)	28(1)
C(6)	1254(2)	3263(2)	6573(1)	27(1)
C(7)	1758(1)	3582(2)	5763(1)	24(1)
C(8)	2784(2)	706(2)	7771(2)	33(1)
C(9)	364(2)	3945(2)	6743(2)	34(1)
C(10)	2086(1)	6231(1)	5089(1)	21(1)
C(11)	1534(1)	7007(1)	5455(1)	20(1)
C(12)	2028(1)	7444(1)	5881(1)	22(1)
C(13)	1521(1)	8168(2)	6210(1)	24(1)
C(14)	519(2)	8462(2)	6129(2)	29(1)
C(15)	32(2)	8018(2)	5711(2)	31(1)
C(16)	529(1)	7298(2)	5373(1)	25(1)
C(17)	2088(2)	8645(2)	6633(2)	29(1)
C(18)	-1053(2)	8328(2)	5592(2)	50(1)
C(19)	3133(1)	6383(1)	2775(1)	20(1)
C(20)	2949(1)	6737(1)	1753(1)	20(1)
C(21)	3683(2)	6655(2)	1130(1)	24(1)
C(22)	3462(2)	6984(2)	194(1)	30(1)
C(23)	2517(2)	7410(2)	-135(2)	33(1)
C(24)	1790(2)	7493(2)	488(2)	30(1)
C(25)	1996(2)	7162(2)	1426(1)	26(1)
C(26)	4248(2)	6885(2)	-480(2)	43(1)
C(27)	754(2)	7948(2)	166(2)	47(1)
C(28)	6319(1)	6398(1)	2594(1)	21(1)
C(29)	7054(1)	6267(1)	1876(1)	20(1)
C(30)	7615(1)	5344(1)	1957(1)	21(1)
C(31)	8285(1)	5243(1)	1282(1)	23(1)
C(32)	8410(1)	6060(2)	524(1)	24(1)
C(33)	7842(1)	6982(2)	447(1)	24(1)
C(34)	7165(1)	7089(1)	1114(1)	22(1)
C(35)	8866(2)	4226(2)	1394(2)	30(1)
C(36)	7940(2)	7888(2)	-364(1)	28(1)
C(37)	5717(1)	1940(1)	5914(1)	22(1)
C(38)	6399(1)	1517(1)	6737(1)	22(1)

7397(2)	1298(1)	6636(1)	25(1)
8010(2)	922(1)	7406(1)	26(1)
7639(2)	751(1)	8284(1)	26(1)
6637(2)	961(1)	8384(1)	24(1)
6018(1)	1342(1)	7619(1)	23(1)
6208(2)	754(2)	9326(1)	29(1)
9087(2)	754(2)	7274(2)	38(1)
5426(1)	3875(1)	2884(1)	21(1)
4637(1)	3444(1)	2691(1)	21(1)
3762(1)	4040(2)	2294(1)	23(1)
3011(2)	3622(2)	2189(1)	28(1)
3131(2)	2609(2)	2476(2)	31(1)
4014(2)	2011(2)	2872(2)	32(1)
4766(2)	2418(2)	2979(1)	27(1)
2065(2)	4304(2)	1799(2)	40(1)
4169(2)	904(2)	3182(3)	54(1)
3853(1)	5784(2)	4834(1)	17(1)
4512(2)	5590(2)	3871(1)	17(1)
5768(2)	5326(2)	4062(1)	18(1)
5262(1)	4247(2)	4338(1)	18(1)
4006(2)	4579(2)	4809(1)	18(1)
5030(1)	3736(2)	5528(1)	17(1)
	7397(2) $8010(2)$ $7639(2)$ $6637(2)$ $6018(1)$ $6208(2)$ $9087(2)$ $5426(1)$ $4637(1)$ $3762(1)$ $3011(2)$ $3131(2)$ $4014(2)$ $4766(2)$ $2065(2)$ $4169(2)$ $3853(1)$ $4512(2)$ $5768(2)$ $5262(1)$ $4006(2)$ $5030(1)$	7397(2) $1298(1)$ $8010(2)$ $922(1)$ $7639(2)$ $751(1)$ $6637(2)$ $961(1)$ $6018(1)$ $1342(1)$ $6018(1)$ $1342(1)$ $6208(2)$ $754(2)$ $9087(2)$ $754(2)$ $9087(2)$ $754(2)$ $5426(1)$ $3875(1)$ $4637(1)$ $3444(1)$ $3762(1)$ $4040(2)$ $3011(2)$ $3622(2)$ $3131(2)$ $2609(2)$ $4014(2)$ $2011(2)$ $4766(2)$ $2418(2)$ $2065(2)$ $4304(2)$ $4169(2)$ $904(2)$ $3853(1)$ $5784(2)$ $4512(2)$ $5590(2)$ $5768(2)$ $5326(2)$ $5262(1)$ $4247(2)$ $4006(2)$ $4579(2)$ $5030(1)$ $3736(2)$	7397(2) $1298(1)$ $66336(1)$ $8010(2)$ $922(1)$ $7406(1)$ $7639(2)$ $751(1)$ $8284(1)$ $6637(2)$ $961(1)$ $8384(1)$ $6018(1)$ $1342(1)$ $7619(1)$ $6208(2)$ $754(2)$ $9326(1)$ $9087(2)$ $754(2)$ $7274(2)$ $5426(1)$ $3875(1)$ $2884(1)$ $4637(1)$ $3444(1)$ $2691(1)$ $3762(1)$ $4040(2)$ $2294(1)$ $3011(2)$ $3622(2)$ $2189(1)$ $3131(2)$ $2609(2)$ $2476(2)$ $4766(2)$ $2418(2)$ $2979(1)$ $2065(2)$ $4304(2)$ $1799(2)$ $4169(2)$ $904(2)$ $3182(3)$ $3853(1)$ $5784(2)$ $4834(1)$ $4512(2)$ $5590(2)$ $3871(1)$ $5768(2)$ $5326(2)$ $4062(1)$ $5262(1)$ $4247(2)$ $4338(1)$ $4006(2)$ $4579(2)$ $4809(1)$ $5030(1)$ $3736(2)$ $5528(1)$

¹ a) Farha, O. K.; Julius, R. L.; Lee, M. W.; Huertas, R. E.; Knobler, C. B.; Hawthorne, M. F. Synthesis of Stable Dodecaalkoxy Derivatives of *hypercloso*-B₁₂H₁₂. *J. Am. Chem. Soc.* **2005**, *127*, 18243-18251; b) Bayer, M. J.; Hawthorne, M. F. An Improved Method for the Synthesis of [*closo*-B₁₂(OH)₁₂]⁻². *Inorg. Chem.* **2004**, *43*, 2018-2020.

² Messina, M. S.; Axtell, J. C.; Wang, Y.; Chong, P.; Wixtrom, A. I.; Kirlikovali, K. O.; Upton, B. M.; Hunter, B. M.; Shafaat, O. S.; Khan, S. I.; Winkler, J. R.; Gray, H. B.; Alexandrova, A. N.; Maynard, H. D.; Spokoyny, A. M. Visible-Light-Induced Olefin Activation Using 3D Aromatic Boron-Rich Cluster Photooxidants. *J. Am. Chem. Soc.* 2016, *138*, 6952-6955.
³ Wixtrom, A. I.; Shao, Y.; Jung, D.; Machan, C. W.; Kevork, S. N.; Qian, E. A.; Axtell, J. C.; Khan, S. I.; Kubiak, C. P.; Spokoyny, A. M. Rapid Synthesis of Redox-Active Dodecaborane B₁₂(OR)₁₂ Clusters Under Ambient Conditions. *Inorg. Chem. Front.* 2016, *3*, 711-717.
⁴ Aubry, T. J.; Axtell, J. C.; Basile, V. M.; Winchell, K. J.; Lindemuth, J. R.; Porter, T. M.; Liu, J.-Y.; Alexandrova, A. N.; Kubiak, C. P.; Tolbert, S. H.; Spokoyny, A. M.; Schwartz, B. J. Dodecaborane-Based Dopants Designed to Shield Anion Electrostatics Lead to Increased Carrier Mobility in a Doped Conjugated Polymer. *Adv. Mater.* 2019, *31*, 1805647.

⁵ TURBOMOLE V6.6 2014, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

⁶ Tao, J. M.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. *Phys. Rev. Lett.* **2003**, *91*, 146401.

⁷ Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.

⁸ F. Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057-1065.

⁹ Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

¹⁰ Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. *J. Chem. Phys.* **2003**, *119*, 12129.

¹¹ Dunning, Jr., T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen. J. Chem. Phys. **1989**, *90*, 1007-1023.

¹² Davidson, E. R. Comment on "Comment on Dunning's Correlation-Consistent Basis Sets" *Chem. Phys. Lett.* **1996**, *260*, 514-518.

¹³ Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. *J. Appl. Crystallogr.* **2011**, *44*, 1272-1276.

¹⁴ Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Schulten; K. Scalable Molecular Dynamics with NAMD. *J. Comp. Chem.* **2005**, *26*, 1781-1802.

¹⁵ Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N·log(N) Method for Ewald Sums in Large Systems. *J. Chem. Phys.* **1993**, *98*, 10089-10092.

¹⁶ Vanommeslaeghe, K.; Raman, E. P.; MacKerell, Jr., A. D. Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges. *J. Chem. Inform. Modeling* **2012**, *52*, 3155-3168.

¹⁷ Vanommeslaeghe, K.; MacKerell Jr. A. D. Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing. *J. Chem. Inform. Modeling* **2012**, *52*, 3144-3154. ¹⁸ *PetaChem*. 2011: p. <u>http://www.petachem.com</u>

¹⁹ Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. *J. Molec. Graphics* **1996**, *14*, 33-38.

²⁰ Gray, H. B.; Maverick, A. W. Solar Chemistry of Metal Complexes. *Science* **1981**, *214*, 1201-1205.

²¹ Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. *Chem. Rev.* **1996**, *96*, 877-910.