829 research outputs found

    Testing turbulent closure models with convection simulations

    Full text link
    We compare simple analytical closure models of homogeneous turbulent Boussinesq convection for stellar applications with three-dimensional simulations. We use simple analytical closure models to compute the fluxes of angular momentum and heat as a function of rotation rate measured by the Taylor number. We also investigate cases with varying angles between the angular velocity and gravity vectors, corresponding to locating the computational domain at different latitudes ranging from the pole to the equator of the star. We perform three-dimensional numerical simulations in the same parameter regimes for comparison. The free parameters appearing in the closure models are calibrated by two fitting methods using simulation data. Unique determination of the closure parameters is possible only in the non-rotating case or when the system is placed at the pole. In the other cases the fit procedures yield somewhat differing results. The quality of the closure is tested by substituting the resulting coefficients back into the closure model and comparing with the simulation results. To eliminate the possibilities that the results obtained depend on the aspect ratio of the simulation domain or suffer from too small Rayleigh numbers we performed runs varying these parameters. The simulation data for the Reynolds stress and heat fluxes broadly agree with previous compressible simulations. The closure works fairly well with slow and fast rotation but its quality degrades for intermediate rotation rates. We find that the closure parameters depend not only on rotation rate but also on latitude. The weak dependence on Rayleigh number and the aspect ratio of the domain indicates that our results are generally validComment: 21 pages, 9 figures, submitted to Astron. Nach

    The effects of matter density uncertainties on neutrino oscillations in the Earth

    Get PDF
    We compare three different methods to evaluate uncertainties in the Earth's matter density profile, which are relevant to long baseline experiments, such as neutrino factories.Comment: 3 pages, 1 figure. Talk given at the NuFact'02 Workshop, London, 1-6 July, 200

    Octet Baryon Magnetic Moments in the Chiral Quark Model with Configuration Mixing

    Get PDF
    The Coleman-Glashow sum-rule for magnetic moments is always fulfilled in the chiral quark model, independently of SU(3) symmetry breaking. This is due to the structure of the wave functions, coming from the non-relativistic quark model. Experimentally, the Coleman-Glashow sum-rule is violated by about ten standard deviations. To overcome this problem, two models of wave functions with configuration mixing are studied. One of these models violates the Coleman-Glashow sum-rule to the right degree and also reproduces the octet baryon magnetic moments rather accurately.Comment: 22 pages, RevTe

    Measurement of electrons from beauty-hadron decays in p-Pb collisions at √sNN=5.02 TeV and Pb-Pb collisions at √sNN=2.76 TeV

    Get PDF
    The production of beauty hadrons was measured via semi-leptonic decays at mid-rapidity with the ALICE detector at the LHC in the transverse momentum interval 1 <PT <8 GeV/c in minimum-bias p-Pb collisions at root(NN)-N-S = 5.02 TeV and in 1.3 <PT <8 GeV/c in the 20% most central Pb-Pb collisions at root(NN)-N-S = 2.76 TeV. The pp reference spectra at root s = 5.02 TeV and root s = 2.76 TeV, needed for the calculation of the nuclear modification factors RpPb and R-PbPb, were obtained by a pQCD-driven scaling of the cross section of electrons from beauty-hadron decays measured at root s = 7 TeV. In the PT interval 3 <PT <8 GeV/c, a suppression of the yield of electrons from beauty-hadron decays is observed in Pb-Pb compared to pp collisions. Towards lower PT, the R-PbPb values increase with large systematic uncertainties. The R-ppb is consistent with unity within systematic uncertainties and is well described by theoretical calculations that include cold nuclear matter effects in p-Pb collisions. The measured R-pPb and these calculations indicate that cold nuclear matter effects are small at high transverse momentum also in Pb-Pb collisions. Therefore, the observed reduction of R-PbPb below unity at high PT may be ascribed to an effect of the hot and dense medium formed in Pb-Pb collisions.Peer reviewe

    First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC

    Get PDF
    This letter presents the first measurement of jet mass in Pb-Pb and Pb-Pb collisions at root s(NN) = 2.76 TeV and root s(NN) = 5.02 TeV, respectively. Both the jet energy and the jet mass are expected to be sensitive to jet quenching in the hot Quantum Chromodynamics (QCD) matter created in nuclear collisions at collider energies. Jets are reconstructed from charged particles using the anti-k(T) jet algorithm and resolution parameter R = 0.4. The jets are measured in the pseudorapidity range |eta(jet)| <0.5 and in three intervals of transverse momentum between 60 GeV/c and 120 GeV/c. The measurement of the jet mass in central Pb-Pb collisions is compared to the jet mass as measured in p-Pb reference collisions, to vacuum event generators, and to models including jet quenching. It is observed that the jet mass in central Pb-Pb collisions is consistent within uncertainties with p-Pb reference measurements. Furthermore, the measured jet mass in Pb-Pb collisions is not reproduced by the quenching models considered in this letter and is found to be consistent with PYTHIA expectations within systematic uncertainties. (C) 2017 The Author. Published by Elsevier B.V.Peer reviewe

    Evolution of the longitudinal and azimuthal structure of the near-side jet peak in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    In two-particle angular correlation measurements, jets give rise to a near-side peak, formed by particles associated to a higher-p(T) trigger particle. Measurements of these correlations as a function of pseudorapidity (Delta eta) and azimuthal (Delta phi) differences are used to extract the centrality and p(T) dependence of the shape of the near-side peak in the p(T) range 1 <p(T) <8 GeV/c in Pb-Pb and pp collisions at root s(NN) = 2.76 TeV. A combined fit of the near-side peak and long-range correlations is applied to the data and the peak shape is quantified by the variance of the distributions. While the width of the peak in the Delta phi direction is almost independent of centrality, a significant broadening in the Delta eta direction is found from peripheral to central collisions. This feature is prominent for the low-p(T) region and vanishes above 4 GeV/c. The widths measured in peripheral collisions are equal to those in pp collisions in the Delta phi direction and above 3 GeV/c in the Delta eta direction. Furthermore, for the 10% most central collisions and 1 <p(T, assoc) <2 GeV/c, 1 <p(T,trig) <3 GeV/c, a departure from a Gaussian shape is found: a depletion develops around the center of the peak. The results are compared to A Multi-Phase Transport (AMPT) model simulation as well as other theoretical calculations indicating that the broadening and the development of the depletion are connected to the strength of radial and longitudinal flow.Peer reviewe

    W and Z boson production in p-Pb collisions at TeV root s(NN)=5.02 TeV

    Get PDF
    The W and Z boson production was measured via the muonic decay channel in proton-lead collisions at root s(NN) = 5.02 TeV at the Large Hadron Collider with the ALICE detector. The measurement covers backward (4.46 10 GeV/c are determined. The results are compared to theoretical calculations both with and without including the nuclear modification of the parton distribution functions. The W-boson production is also studied as a function of the collision centrality: the cross section of muons from W-boson decays is found to scale with the average number of binary nucleon-nucleon collisions within uncertainties.Peer reviewe

    Measurement of deuteron spectra and elliptic flow in Pb-Pb collisions at root s(NN)=2.76 TeV at the LHC

    Get PDF
    The transverse momentum (p(T)) spectra and elliptic flow coefficient (v(2)) of deuterons and anti-deuterons at mid-rapidity (|y| 1.8 GeV/c within the experimental uncertainties. The measurement of the coalescence parameter B-2 is performed, showing a p(T) dependence in contrast with the simplest coalescence model, which fails to reproduce also the measured v(2) coefficient. In addition, the coalescence parameter B-2 and the elliptic flow coefficient in the 20-40% centrality interval are compared with the AMPT model which is able, in its version without string melting, to reproduce the measured v(2)(p(T)) and the B-2(p(T)) trend.Peer reviewe
    • 

    corecore