74 research outputs found
Magnetic systems at criticality: different signatures of scaling
Different aspects of critical behaviour of magnetic materials are presented
and discussed. The scaling ideas are shown to arise in the context of purely
magnetic properties as well as in that of thermal properties as demonstrated by
magnetocaloric effect or combined scaling of excess entropy and order
parameter. Two non-standard approaches to scaling phenomena are described. The
presented concepts are exemplified by experimental data gathered on four
representatives of molecular magnets.Comment: 33 pages, 16 figure
Vapochromic Behaviour of M[Au(CN)2]2-Based Coordination Polymers (M = Co, Ni)
A series of M[Au(CN)2]2(analyte)x coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(Ο-OH2)[Au(CN)2]2 yielded visible vapochromic responses for M = Co but not M = Ni; the IR νCN spectral region changed in every case. A single crystal structure of Zn[Au(CN)2]2(DMSO)2 revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)2] in DMSO yielded the isostructural Ni[Au(CN)2]2(DMSO)2 product. Co[Au(CN)2]2(DMSO)2 and M[Au(CN)2]2(DMF)2 (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(Ο-OH2)[Au(CN)2]2 and from DMSO or DMF solution synthesis. Co[Au(CN)2]2(pyridine)4 is generated via vapour absorption by Co(Ο-OH2)[Au(CN)2]2; the analogous Ni complex is synthesized by immersion of Ni(Ο-OH2)[Au(CN)2]2 in 4% aqueous pyridine. Similar immersion of Co(Ο-OH2)[Au(CN)2]2 yielded Co[Au(CN)2]2(pyridine)2, which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(Ο-OH2)[Au(CN)2]2 was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)2]2 was prepared by dehydration of Co(Ο-OH2)[Au(CN)2]2 at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate
- âŚ