4,853 research outputs found
On methods to determine bounds on the Q-factor for a given directivity
This paper revisit and extend the interesting case of bounds on the Q-factor
for a given directivity for a small antenna of arbitrary shape. A higher
directivity in a small antenna is closely connected with a narrow impedance
bandwidth. The relation between bandwidth and a desired directivity is still
not fully understood, not even for small antennas. Initial investigations in
this direction has related the radius of a circumscribing sphere to the
directivity, and bounds on the Q-factor has also been derived for a partial
directivity in a given direction. In this paper we derive lower bounds on the
Q-factor for a total desired directivity for an arbitrarily shaped antenna in a
given direction as a convex problem using semi-definite relaxation techniques
(SDR). We also show that the relaxed solution is also a solution of the
original problem of determining the lower Q-factor bound for a total desired
directivity.
  SDR can also be used to relax a class of other interesting non-convex
constraints in antenna optimization such as tuning, losses, front-to-back
ratio. We compare two different new methods to determine the lowest Q-factor
for arbitrary shaped antennas for a given total directivity. We also compare
our results with full EM-simulations of a parasitic element antenna with high
directivity.Comment: Correct some minor typos in the previous versio
Critical exponents of the two-layer Ising model
The symmetric two-layer Ising model (TLIM) is studied by the corner transfer
matrix renormalisation group method. The critical points and critical exponents
are calculated. It is found that the TLIM belongs to the same universality
class as the Ising model. The shift exponent is calculated to be 1.773, which
is consistent with the theoretical prediction 1.75 with 1.3% deviation.Comment: 7 pages, with 10 figures include
System Size Stochastic Resonance: General Nonequilibrium Potential Framework
We study the phenomenon of system size stochastic resonance within the
nonequilibrium potential's framework. We analyze three different cases of
spatially extended systems, exploiting the knowledge of their nonequilibrium
potential, showing that through the analysis of that potential we can obtain a
clear physical interpretation of this phenomenon in wide classes of extended
systems. Depending on the characteristics of the system, the phenomenon results
to be associated to a breaking of the symmetry of the nonequilibrium potential
or to a deepening of the potential minima yielding an effective scaling of the
noise intensity with the system size.Comment: LaTex, 24 pages and 9 figures, submitted to Phys. Rev. 
Wave nucleation rate in excitable systems in the low noise limit
Motivated by recent experiments on intracellular calcium dynamics, we study
the general issue of fluctuation-induced nucleation of waves in excitable
media. We utilize a stochastic Fitzhugh-Nagumo model for this study, a
spatially-extended non-potential pair of equations driven by thermal (i.e.
white) noise. The nucleation rate is determined by finding the most probable
escape path via minimization of an action related to the deviation of the
fields from their deterministic trajectories. Our results pave the way both for
studies of more realistic models of calcium dynamics as well as of nucleation
phenomena in other non-equilibrium pattern-forming processes
Prediction of infrared light emission from pi-conjugated polymers: a diagrammatic exciton basis valence bond theory
There is currently a great need for solid state lasers that emit in the
infrared, as this is the operating wavelength regime for applications in
telecommunications. Existing --conjugated polymers all emit in the visible
or ultraviolet, and whether or not --conjugated polymers that emit in the
infrared can be designed is an interesting challenge. On the one hand, the
excited state ordering in trans-polyacetylene, the --conjugated polymer
with relatively small optical gap, is not conducive to light emission because
of electron-electron interaction effects. On the other hand, excited state
ordering opposite to that in trans-polyacetylene is usually obtained by
chemical modification that increases the effective bond-alternation, which in
turn increases the optical gap. We develop a theory of electron correlation
effects in a model -conjugated polymer that is obtained by replacing the
hydrogen atoms of trans-polyacetylene with transverse conjugated groups, and
show that the effective on-site correlation in this system is smaller than the
bare correlation in the unsubstituted system. An optical gap in the infrared as
well as excited state ordering conducive to light emission is thereby predicted
upon similar structural modifications.Comment: 15 pages, 15 figures, 1 tabl
- …
