Abstract

Motivated by recent experiments on intracellular calcium dynamics, we study the general issue of fluctuation-induced nucleation of waves in excitable media. We utilize a stochastic Fitzhugh-Nagumo model for this study, a spatially-extended non-potential pair of equations driven by thermal (i.e. white) noise. The nucleation rate is determined by finding the most probable escape path via minimization of an action related to the deviation of the fields from their deterministic trajectories. Our results pave the way both for studies of more realistic models of calcium dynamics as well as of nucleation phenomena in other non-equilibrium pattern-forming processes

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019