Motivated by recent experiments on intracellular calcium dynamics, we study
the general issue of fluctuation-induced nucleation of waves in excitable
media. We utilize a stochastic Fitzhugh-Nagumo model for this study, a
spatially-extended non-potential pair of equations driven by thermal (i.e.
white) noise. The nucleation rate is determined by finding the most probable
escape path via minimization of an action related to the deviation of the
fields from their deterministic trajectories. Our results pave the way both for
studies of more realistic models of calcium dynamics as well as of nucleation
phenomena in other non-equilibrium pattern-forming processes