2,126 research outputs found

    Inequalities for quantum channels assisted by limited resources

    Full text link
    The information capacities and ``distillability'' of a quantum channel are studied in the presence of auxiliary resources. These include prior entanglement shared between the sender and receiver and free classical bits of forward and backward communication. Inequalities and trade-off curves are derived. In particular an alternative proof is given that in the absence of feedback and shared entanglement, forward classical communication does not increase the quantum capacity of a channel.Comment: 8 pages, 4 figures (references updated, minor changes

    Quantum computing of delocalization in small-world networks

    Full text link
    We study a quantum small-world network with disorder and show that the system exhibits a delocalization transition. A quantum algorithm is built up which simulates the evolution operator of the model in a polynomial number of gates for exponential number of vertices in the network. The total computational gain is shown to depend on the parameters of the network and a larger than quadratic speed-up can be reached. We also investigate the robustness of the algorithm in presence of imperfections.Comment: 4 pages, 5 figures, research done at http://www.quantware.ups-tlse.fr

    Restrictions on Transversal Encoded Quantum Gate Sets

    Full text link
    Transversal gates play an important role in the theory of fault-tolerant quantum computation due to their simplicity and robustness to noise. By definition, transversal operators do not couple physical subsystems within the same code block. Consequently, such operators do not spread errors within code blocks and are, therefore, fault tolerant. Nonetheless, other methods of ensuring fault tolerance are required, as it is invariably the case that some encoded gates cannot be implemented transversally. This observation has led to a long-standing conjecture that transversal encoded gate sets cannot be universal. Here we show that the ability of a quantum code to detect an arbitrary error on any single physical subsystem is incompatible with the existence of a universal, transversal encoded gate set for the code.Comment: 4 pages, v2: minor change

    Clifford Gates by Code Deformation

    Full text link
    Topological subsystem color codes add to the advantages of topological codes an important feature: error tracking only involves measuring 2-local operators in a two dimensional setting. Unfortunately, known methods to compute with them were highly unpractical. We give a mechanism to implement all Clifford gates by code deformation in a planar setting. In particular, we use twist braiding and express its effects in terms of certain colored Majorana operators.Comment: Extended version with more detail

    Magnetic qubits as hardware for quantum computers

    Full text link
    We propose two potential realisations for quantum bits based on nanometre scale magnetic particles of large spin S and high anisotropy molecular clusters. In case (1) the bit-value basis states |0> and |1> are the ground and first excited spin states Sz = S and S-1, separated by an energy gap given by the ferromagnetic resonance (FMR) frequency. In case (2), when there is significant tunnelling through the anisotropy barrier, the qubit states correspond to the symmetric, |0>, and antisymmetric, |1>, combinations of the two-fold degenerate ground state Sz = +- S. In each case the temperature of operation must be low compared to the energy gap, \Delta, between the states |0> and |1>. The gap \Delta in case (2) can be controlled with an external magnetic field perpendicular to the easy axis of the molecular cluster. The states of different molecular clusters and magnetic particles may be entangled by connecting them by superconducting lines with Josephson switches, leading to the potential for quantum computing hardware.Comment: 17 pages, 3 figure

    Quantum divisibility test and its application in mesoscopic physics

    Full text link
    We present a quantum algorithm to transform the cardinality of a set of charged particles flowing along a quantum wire into a binary number. The setup performing this task (for at most N particles) involves log_2 N quantum bits serving as counters and a sequential read out. Applications include a divisibility check to experimentally test the size of a finite train of particles in a quantum wire with a one-shot measurement and a scheme allowing to entangle multi-particle wave functions and generating Bell states, Greenberger-Horne-Zeilinger states, or Dicke states in a Mach-Zehnder interferometer.Comment: 9 pages, 5 figure

    Fermionic quantum computation

    Get PDF
    We define a model of quantum computation with local fermionic modes (LFMs) -- sites which can be either empty or occupied by a fermion. With the standard correspondence between the Foch space of mm LFMs and the Hilbert space of mm qubits, simulation of one fermionic gate takes O(m)O(m) qubit gates and vice versa. We show that using different encodings, the simulation cost can be reduced to O(logm)O(\log m) and a constant, respectively. Nearest-neighbors fermionic gates on a graph of bounded degree can be simulated at a constant cost. A universal set of fermionic gates is found. We also study computation with Majorana fermions which are basically halves of LFMs. Some connection to qubit quantum codes is made.Comment: 18 pages, Latex; one reference adde

    Scaling of running time of quantum adiabatic algorithm for propositional satisfiability

    Full text link
    We numerically study quantum adiabatic algorithm for the propositional satisfiability. A new class of previously unknown hard instances is identified among random problems. We numerically find that the running time for such instances grows exponentially with their size. Worst case complexity of quantum adiabatic algorithm therefore seems to be exponential.Comment: 7 page
    corecore