4 research outputs found

    Gender differences in respiratory health outcomes among farming cohorts around the globe: findings from the AGRICOH consortium

    No full text
    International audiencePurpose: Respiratory hazards of farming have been identified for centuries, with little focus on gender differences. We used data from the AGRICOH consortium, a collective of prospective cohorts of agricultural workers, to assess respiratory disease prevalence among adults in 18 cohorts representing over 200,000 farmers, farm workers, and their spouses from six continents.Methods: Cohorts collected data between 1992 and 2016 and ranged in size from 200 to >128,000 individuals; 44% of participants were female. Farming practices varied from subsistence farming to large-scale industrial agriculture. All cohorts provided respiratory outcome information for their cohort based on their study definitions. The majority of outcomes were based on self-report using standard respiratory questionnaires; the greatest variability in assessment methods was associated with chronic obstructive pulmonary disease (COPD).Results: For all three respiratory symptoms (cough, phlegm, and wheeze), the median prevalence in men was higher than in women, with the greatest difference for phlegm (17% vs. 10%). For asthma, women had a higher prevalence (7.8% vs 6.5%), with the difference associated with allergic asthma. The relative proportion of allergic asthma varied among cohorts. In two of eight cohorts for women and two of seven cohorts for men, allergic asthma was more common than non-allergic asthma.Conclusions: These findings indicate that respiratory outcomes are common among farmers around the world despite differences in agricultural production. As women in the general population are at higher risk of asthma, exploring gender differences in occupational studies is critical for a deeper understanding of respiratory disease among agricultural workers

    Software Defined Networking: Research Issues, Challenges and Opportunities

    No full text

    Natural Killer (NK) Cells in Antibacterial Innate Immunity: Angels or Devils?

    No full text
    Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. The recent demonstration that NK cells express pattern recognition receptors, namely Toll-like and nucleotide oligomerization domain (NOD)-like receptors, led to the understanding that these cells are not only under the control of accessory cells, but can be directly involved in the antibacterial response thanks to their capacity to recognize pathogen-associated molecular patterns. Interferon (IFN)-γ is the predominant cytokine produced by activated NK cells. IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances
    corecore