1,037 research outputs found
Inflationary spectra and partially decohered distributions
It is generally expected that decoherence processes will erase the quantum
properties of the inflationary primordial spectra. However, given the weakness
of gravitational interactions, one might end up with a distribution which is
only partially decohered. Below a certain critical change, we show that the
inflationary distribution retains quantum properties. We identify four of
these: a squeezed spread in some direction of phase space, non-vanishing
off-diagonal matrix elements, and two properties used in quantum optics called
non--representability and non-separability. The last two are necessary
conditions to violate Bell's inequalities. The critical value above which all
these properties are lost is associated to the `grain' of coherent states. The
corresponding value of the entropy is equal to half the maximal (thermal)
value. Moreover it coincides with the entropy of the effective distribution
obtained by neglecting the decaying modes. By considering backreaction effects,
we also provide an upper bound for this entropy at the onset of the adiabatic
era.Comment: 42 pages, 9 figures; 1 ref. adde
Probing the Equation of State of Nuclear Matter via Neutron Star Asteroseismology
We general relativistically calculate the frequency of fundamental torsional
oscillations of neutron star crusts, where we focus on the crystalline
properties obtained from macroscopic nuclear models in a way depending on the
equation of state of nuclear matter. We find that the calculated frequency is
sensitive to the density dependence of the symmetry energy, but almost
independent of the incompressibility of symmetric nuclear matter. By
identifying the lowest-frequency quasi-periodic oscillation in giant flares
observed from soft gamma-ray repeaters as the fundamental torsional mode and
allowing for the dependence of the calculated frequency on stellar models, we
provide a lower limit of the density derivative of the symmetry energy as
MeV.Comment: 4 pages, 4 figure
Oscillations of rapidly rotating relativistic stars
Non-axisymmetric oscillations of rapidly rotating relativistic stars are
studied using the Cowling approximation. The oscillation spectra have been
estimated by Fourier transforming the evolution equations describing the
perturbations. This is the first study of its kind and provides information on
the effect of fast rotation on the oscillation spectra while it offers the
possibility in studying the complete problem by including spacetime
perturbations. Our study includes both axisymmetric and non-axisymmetric
perturbations and provides limits for the onset of the secular bar mode
rotational instability. We also present approximate formulae for the dependence
of the oscillation spectrum from rotation. The results suggest that it is
possible to extract the relativistic star's parameters from the observed
gravitational wave spectrum.Comment: this article will be published in Physical Review
Maximum elastic deformations of relativistic stars
We present a method for calculating the maximum elastic quadrupolar
deformations of relativistic stars, generalizing the previous Newtonian,
Cowling approximation integral given by [G. Ushomirsky et al., Mon. Not. R.
Astron. Soc. 319, 902 (2000)]. (We also present a method for Newtonian gravity
with no Cowling approximation.) We apply these methods to the m = 2 quadrupoles
most relevant for gravitational radiation in three cases: crustal deformations,
deformations of crystalline cores of hadron-quark hybrid stars, and
deformations of entirely crystalline color superconducting quark stars. In all
cases, we find suppressions of the quadrupole due to relativity compared to the
Newtonian Cowling approximation, particularly for compact stars. For the crust
these suppressions are up to a factor ~6, for hybrid stars they are up to ~4,
and for solid quark stars they are at most ~2, with slight enhancements instead
for low mass stars. We also explore ranges of masses and equations of state
more than in previous work, and find that for some parameters the maximum
quadrupoles can still be very large. Even with the relativistic suppressions,
we find that 1.4 solar mass stars can sustain crustal quadrupoles of a few
times 10^39 g cm^2 for the SLy equation of state or close to 10^40 g cm^2 for
equations of state that produce less compact stars. Solid quark stars of 1.4
solar masses can sustain quadrupoles of around 10^44 g cm^2. Hybrid stars
typically do not have solid cores at 1.4 solar masses, but the most massive
ones (~2 solar masses) can sustain quadrupoles of a few times 10^41 g cm^2 for
typical microphysical parameters and a few times 10^42 g cm^2 for extreme ones.
All of these quadrupoles assume a breaking strain of 0.1 and can be divided by
10^45 g cm^2 to yield the fiducial "ellipticities" quoted elsewhere.Comment: 21 pages, 11 figures, version accepted by PRD, including the
corrected maximum hybrid star quadrupoles (from the erratum to the shear
modulus calculation) and the corrected binding energy computatio
Crustal Oscillations of Slowly Rotating Relativistic Stars
We study low-amplitude crustal oscillations of slowly rotating relativistic
stars consisting of a central fluid core and an outer thin solid crust. We
estimate the effect of rotation on the torsional toroidal modes and on the
interfacial and shear spheroidal modes. The results compared against the
Newtonian ones for wide range of neutron star models and equations of state.Comment: 15 page
Cosmological Perturbations of Quantum-Mechanical Origin and Anisotropy of the Microwave Background
Cosmological perturbations generated quantum-mechanically (as a particular
case, during inflation) possess statistical properties of squeezed quantum
states. The power spectra of the perturbations are modulated and the angular
distribution of the produced temperature fluctuations of the CMBR is quite
specific. An exact formula is derived for the angular correlation function of
the temperature fluctuations caused by squeezed gravitational waves. The
predicted angular pattern can, in principle, be revealed by the COBE-type
observations.Comment: 9 pages, WUGRAV-92-17 Accepted for Publication in Phys. Rev. Letters
(1993
ASTROD, ASTROD I and their gravitational-wave sensitivities
ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) is a
mission concept with three spacecraft -- one near L1/L2 point, one with an
inner solar orbit and one with an outer solar orbit, ranging coherently with
one another using lasers to test relativistic gravity, to measure the solar
system and to detect gravitational waves. ASTROD I with one spacecraft ranging
optically with ground stations is the first step toward the ASTROD mission. In
this paper, we present the ASTROD I payload and accelerometer requirements,
discuss the gravitational-wave sensitivities for ASTROD and ASTROD I, and
compare them with LISA and radio-wave PDoppler-tracking of spacecraft.Comment: presented to the 5th Edoardo Amaldi Conference (July 6-11, 2003) and
submitted to Classical and Quantum Gravit
- …
