3,860 research outputs found

    Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models

    Get PDF
    This tutorial provides a gentle introduction to the particle Metropolis-Hastings (PMH) algorithm for parameter inference in nonlinear state-space models together with a software implementation in the statistical programming language R. We employ a step-by-step approach to develop an implementation of the PMH algorithm (and the particle filter within) together with the reader. This final implementation is also available as the package pmhtutorial in the CRAN repository. Throughout the tutorial, we provide some intuition as to how the algorithm operates and discuss some solutions to problems that might occur in practice. To illustrate the use of PMH, we consider parameter inference in a linear Gaussian state-space model with synthetic data and a nonlinear stochastic volatility model with real-world data.Comment: 41 pages, 7 figures. In press for Journal of Statistical Software. Source code for R, Python and MATLAB available at: https://github.com/compops/pmh-tutoria

    Magnetometer calibration using inertial sensors

    Full text link
    In this work we present a practical algorithm for calibrating a magnetometer for the presence of magnetic disturbances and for magnetometer sensor errors. To allow for combining the magnetometer measurements with inertial measurements for orientation estimation, the algorithm also corrects for misalignment between the magnetometer and the inertial sensor axes. The calibration algorithm is formulated as the solution to a maximum likelihood problem and the computations are performed offline. The algorithm is shown to give good results using data from two different commercially available sensor units. Using the calibrated magnetometer measurements in combination with the inertial sensors to determine the sensor's orientation is shown to lead to significantly improved heading estimates.Comment: 19 pages, 8 figure

    Optimal controller/observer gains of discounted-cost LQG systems

    Full text link
    The linear-quadratic-Gaussian (LQG) control paradigm is well-known in literature. The strategy of minimizing the cost function is available, both for the case where the state is known and where it is estimated through an observer. The situation is different when the cost function has an exponential discount factor, also known as a prescribed degree of stability. In this case, the optimal control strategy is only available when the state is known. This paper builds on from that result, deriving an optimal control strategy when working with an estimated state. Expressions for the resulting optimal expected cost are also given

    On the construction of probabilistic Newton-type algorithms

    Full text link
    It has recently been shown that many of the existing quasi-Newton algorithms can be formulated as learning algorithms, capable of learning local models of the cost functions. Importantly, this understanding allows us to safely start assembling probabilistic Newton-type algorithms, applicable in situations where we only have access to noisy observations of the cost function and its derivatives. This is where our interest lies. We make contributions to the use of the non-parametric and probabilistic Gaussian process models in solving these stochastic optimisation problems. Specifically, we present a new algorithm that unites these approximations together with recent probabilistic line search routines to deliver a probabilistic quasi-Newton approach. We also show that the probabilistic optimisation algorithms deliver promising results on challenging nonlinear system identification problems where the very nature of the problem is such that we can only access the cost function and its derivative via noisy observations, since there are no closed-form expressions available
    • …
    corecore