123 research outputs found

    Supercurrent in Nb/InAs-Nanowire/Nb Josephson junctions

    Get PDF
    We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. In junctions with high doping concentrations in the nanowire Josephson supercurrent values up to 100\,nA are found. Owing to the use of Nb as superconductor the Josephson coupling persists at temperatures up to 4K. In all junctions the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.Comment: 5 Figure, submitted to Journal of Applied Physic

    Night sleep in patients with vegetative state

    Full text link
    Polysomnographic recording of night sleep was carried out in 15 patients with the diagnosis vegetative state (syn. unresponsive wakefulness syndrome). Sleep scoring was performed by three raters, and confirmed by means of a spectral power analysis of the electroencephalogram, electrooculogram and electromyogram. All patients but one exhibited at least some signs of sleep. In particular, sleep stage N1 was found in 13 patients, N2 in 14 patients, N3 in nine patients, and rapid eye movement sleep in 10 patients. Three patients exhibited all phenomena characteristic for normal sleep, including spindles and rapid eye movements. However, in all but one patient, sleep patterns were severely disturbed as compared with normative data. All patients had frequent and long periods of wakefulness during the night. In some apparent rapid eye movement sleep episodes, no eye movements were recorded. Sleep spindles were detected in five patients only, and their density was very low. We conclude that the majority of vegetative state patients retain some important circadian changes. Further studies are necessary to disentangle multiple factors potentially affecting sleep pattern of vegetative state patients. © 2017 European Sleep Research SocietyThis study was supported by the Deutsche Forschungsgemeinschaft

    Temperature-dependence of the phase-coherence length in InN nanowires

    Full text link
    We report on low-temperature magnetotransport measurements on InN nanowires, grown by plasma-assisted molecular beam epitaxy. The characteristic fluctuation pattern observed in the conductance was employed to obtain information on phase-coherent transport. By analyzing the root-mean-square and the correlation field of the conductance fluctuations at various temperatures the phase-coherence length was determined.Comment: 4 pages, 4 figure

    Observation of supercurrent enhancement in SNS junctions by non-equilibrium injection into supercurrent carrying bound Andreev states

    Get PDF
    We report for the first time enhancement of the supercurrent by means of injection in a mesoscopic three terminal planar SNSNS device made of Al on GaAs. When a current is injected from one of the superconducting Al electrodes at an injection bias V=Δ(T)/eV=\Delta(T)/e, the DC Josephson current between the other two superconducting electrodes has a maximum, giving evidence for an enhancement due to a non-equilibrium injection into bound Andreev states of the underlying semiconductor. The effect persists to temperatures where the equilibrium supercurrent has vanished.Comment: 7 pages + 3 figures. Resubmitted to Phys. Rev. Lett. Contents change

    Observation of a controllable PI-junction in a 3-terminal Josephson device

    Full text link
    Recently Baselmans et al. [Nature, 397, 43 (1999)] showed that the direction of the supercurrent in a superconductor/normal/superconductor Josephson junction can be reversed by applying, perpendicularly to the supercurrent, a sufficiently large control current between two normal reservoirs. The novel behavior of their 4-terminal device (called a controllable PI-junction) arises from the nonequilibrium electron energy distribution established in the normal wire between the two superconductors. We have observed a similar supercurrent reversal in a 3-terminal device, where the control current passes from a single normal reservoir into the two superconductors. We show theoretically that this behavior, although intuitively less obvious, arises from the same nonequilibrium physics present in the 4-terminal device. Moreover, we argue that the amplitude of the PI-state critical current should be at least as large in the 3-terminal device as in a comparable 4-terminal device.Comment: 4 pages, 4 figures, to appear in Physical Review B Rapid Communication

    Spin polarization of the L-gap surface states on Au(111)

    Full text link
    The electron spin polarization (ESP) of the L-gap surface states on Au(111) is investigated theoretically by means of first-principles electronic-structure and photoemission calculations. The surface states show a large spin-orbit induced in-plane ESP which is perpendicular to the in-plane wavevector, in close analogy to a two-dimensional electron gas with Rashba spin-orbit interaction. The surface corrugation leads to a small ESP component normal to the surface, being not reported so far. The surface-states ESP can be probed qualitatively and quantitatively by spin- and angle-resolved photoelectron spectroscopy, provided that the initial-state ESP is retained in the photoemission process and not obscured by spin-orbit induced polarization effects. Relativistic photoemission calculations provide detailed information on what photoemission set-ups allow to conclude from the photoelectron ESP on that of the surface states.Comment: 22 pages with 8 figure

    Thermodynamic Properties of the Anisotropic Frustrated Spin-chain Compound Linarite PbCuSO4_4(OH)2_2

    Full text link
    We present a comprehensive macroscopic thermodynamic study of the quasi-one-dimensional (1D) s=12s = \tfrac{1}{2} frustrated spin-chain system linarite. Susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-expansion measurements were performed to characterize the magnetic phase diagram. In particular, for magnetic fields along the b axis five different magnetic regions have been detected, some of them exhibiting short-range-order effects. The experimental magnetic entropy and magnetization are compared to a theoretical modelling of these quantities using DMRG and TMRG approaches. Within the framework of a purely 1D isotropic model Hamiltonian, only a qualitative agreement between theory and the experimental data can be achieved. Instead, it is demonstrated that a significant symmetric anisotropic exchange of about 10% is necessary to account for the basic experimental observations, including the 3D saturation field, and which in turn might stabilize a triatic (three-magnon) multipolar phase.Comment: 20 pages, 17 figure

    Electric Field Control of Spin Transport

    Full text link
    Spintronics is an approach to electronics in which the spin of the electrons is exploited to control the electric resistance R of devices. One basic building block is the spin-valve, which is formed if two ferromagnetic electrodes are separated by a thin tunneling barrier. In such devices, R depends on the orientation of the magnetisation of the electrodes. It is usually larger in the antiparallel than in the parallel configuration. The relative difference of R, the so-called magneto-resistance (MR), is then positive. Common devices, such as the giant magneto-resistance sensor used in reading heads of hard disks, are based on this phenomenon. The MR may become anomalous (negative), if the transmission probability of electrons through the device is spin or energy dependent. This offers a route to the realisation of gate-tunable MR devices, because transmission probabilities can readily be tuned in many devices with an electrical gate signal. Such devices have, however, been elusive so far. We report here on a pronounced gate-field controlled MR in devices made from carbon nanotubes with ferromagnetic contacts. Both the amplitude and the sign of the MR are tunable with the gate voltage in a predictable manner. We emphasise that this spin-field effect is not restricted to carbon nanotubes but constitutes a generic effect which can in principle be exploited in all resonant tunneling devices.Comment: 22 pages, 5 figure

    Magnetic properties and revisited exchange integrals of the frustrated chain cuprate PbCuSO4_4(OH)2_2 - linarite

    Full text link
    We present a detailed study in the paramagnetic regime of the frustrated ss = 1/2 spin-compound linarite, PbCuSO4_4(OH)2_2, with competing ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor exchange interactions. Our data reveal highly anisotropic values for the saturation field along the crystallographic main directions, with \sim 7.6, \sim 10.5 and \sim 8.5\,T for the aa, bb, and cc axes, respectively. In the paramagnetic regime, this behavior is explained mainly by the anisotropy of the \textit{g}-factor but leaving room for an easy-axis exchange anisotropy. Within the isotropic J1J_1-J2J_2 spin model our experimental data are described by various theoretical approaches yielding values for the exchange interactions J1J_1 \sim -100\,K and J2J_2 \sim 36\,K. These main intrachain exchange integrals are significantly larger as compared to the values derived in two previous studies in the literature and shift the frustration ratio α=J2/J1\alpha = J_2/|J_1| \approx 0.36 of linarite closer to the 1D critical point at 0.25. Electron spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements further prove that the static susceptibility is dominated by the intrinsic spin susceptibility. The Knight shift as well as the broadening of the linewidth in ESR and NMR at elevated temperatures indicate a highly frustrated system with the onset of magnetic correlations far above the magnetic ordering temperature TNT_\mathrm{N} = 2.75(5)\,K, in agreement with the calculated exchange constants.Comment: 18 pages, 18 figure
    corecore