110 research outputs found

    Crystal structure of methyl 1-methyl-2-oxospiro[indoline-3,2′-oxirane]-3′-carboxylate

    Get PDF
    Acknowledgements The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for the data collection.Peer reviewedPublisher PD

    Importance of tyrosine residues of Bacillus stearothermophilus serine hydroxymethyltransferase in cofactor binding and L-allo-Thr cleavage

    Get PDF
    Serine hydroxymethyltransferase (SHMT) from Bacillus stearothermophilus (bsSHMT) is a pyridoxal 5′-phosphate-dependent enzyme that catalyses the conversion of L-serine and tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. In addition, the enzyme catalyses the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids and transamination. In this article, we have examined the mechanism of the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids by SHMT. The three-dimensional structure and biochemical properties of Y51F and Y61A bsSHMTs and their complexes with substrates, especially L-allo-Thr, show that the cleavage of 3-hydroxy amino acids could proceed via Cα proton abstraction rather than hydroxyl proton removal. Both mutations result in a complete loss of tetrahydrofolate-dependent and tetrahydrofolate-independent activities. The mutation of Y51 to F strongly affects the binding of pyridoxal 5′-phosphate, possibly as a consequence of a change in the orientation of the phenyl ring in Y51F bsSHMT. The mutant enzyme could be completely reconstituted with pyridoxal 5′-phosphate. However, there was an alteration in the λmax value of the internal aldimine (396 nm), a decrease in the rate of reduction with NaCNBH3 and a loss of the intermediate in the interaction with methoxyamine (MA). The mutation of Y61 to A results in the loss of interaction with Cα and Cβ of the substrates. X-Ray structure and visible CD studies show that the mutant is capable of forming an external aldimine. However, the formation of the quinonoid intermediate is hindered. It is suggested that Y61 is involved in the abstraction of the Cα proton from 3-hydroxy amino acids. A new mechanism for the cleavage of 3-hydroxy amino acids via Cα proton abstraction by SHMT is proposed

    Chickpea

    Get PDF
    The narrow genetic base of cultivated chickpea warrants systematic collection, documentation and evaluation of chickpea germplasm and particularly wild Cicer species for effective and efficient use in chickpea breeding programmes. Limiting factors to crop production, possible solutions and ways to overcome them, importance of wild relatives and barriers to alien gene introgression and strategies to overcome them and traits for base broadening have been discussed. It has been clearly demonstrated that resistance to major biotic and abiotic stresses can be successfully introgressed from the primary gene pool comprising progenitor species. However, many desirable traits including high degree of resistance to multiple stresses that are present in the species belonging to secondary and tertiary gene pools can also be introgressed by using special techniques to overcome pre- and post-fertilization barriers. Besides resistance to various biotic and abiotic stresses, the yield QTLs have also been introgressed from wild Cicer species to cultivated varieties. Status and importance of molecular markers, genome mapping and genomic tools for chickpea improvement are elaborated. Because of major genes for various biotic and abiotic stresses, the transfer of agronomically important traits into elite cultivars has been made easy and practical through marker-assisted selection and marker-assisted backcross. The usefulness of molecular markers such as SSR and SNP for the construction of high-density genetic maps of chickpea and for the identification of genes/QTLs for stress resistance, quality and yield contributing traits has also been discussed

    Tetrabutyl ammonium iodide, cetyl pyridinium bromide and cetyl trimethyl ammonium bromide as corrosion inhibitors for mild steel in sulphuric acid

    No full text
    256-258<span style="font-size:11.0pt;line-height:115%; font-family:" calibri","sans-serif";mso-ascii-theme-font:minor-latin;mso-fareast-font-family:="" "dejavu="" sans";mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"times="" new="" roman";="" color:#00000a;mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:="" ar-sa"="">The inhibitive action of tetrabutyl ammonium iodide, cetyl pyridinium bromide and cetyl trimethyl ammonium bromide towards the corrosion of mild steel in sulphuric acid has been investigated by weight loss and polarisation techniques. The percentage inhibition varies with the nature and concentration of the inhibitor,temperature and pH of the medium. The corrosion inhibition is explained by considering adsorption or complex formation by the inhibitors on the corroding mild steel surface.</span

    Activating and inhibitory receptors and their role in Natural Killer cell function

    No full text
    291-299Last decade has seen a significant advancement in our understanding of the Natural Killer (NK) cell biology and function. Several receptors present on NK cells have been identified, which are involved in either their activation or inhibition. Similarly, a large number of interacting ligands have been identified on the target cells that upon interaction transmit either activating or inhibitory signals. This review is oriented towards understanding the role of these receptors on the NK cells, which are considered as the first line of defense
    corecore