3,075 research outputs found

    Beyond the single-atom response in absorption lineshapes: Probing a dense, laser-dressed helium gas with attosecond pulse trains

    Full text link
    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently to the appearance of new, narrow features in the absorption line.Comment: 5 pages, 5 figure

    More security or less insecurity

    Get PDF
    We depart from the conventional quest for ‘Completely Secure Systems’ and ask ‘How can we be more Secure’. We draw heavily from the evolution of the Theory of Justice and the arguments against the institutional approach to Justice. Central to our argument is the identification of redressable insecurity, or weak links. Our contention is that secure systems engineering is not really about building perfectly secure systems but about redressing manifest insecurities.Final Accepted Versio

    An experimental study of energy dependence of saturation thickness of multiply scattered gamma rays in zinc

    Get PDF
    The present measurements have been carried out to study the energy dependence of saturation thickness of multiply scattered gamma photons from zinc targets of various thicknesses. An inverse response matrix approach has been implemented to convert the observed pulse-height distribution of a NaI (Tl) scintillation detector to a photon spectrum and hence to improve the statistical error. These results in extractions of intensity distribution of multiply scattered events originating from interactions of 662 keV photon with thick target of zinc material. The observed pulse-height distributions are a composite of singly and multiply scattered events. To evaluate the contribution of multiply scattered events only, the spectrum of singly scattered events contributing to inelastic Compton peak has been reconstructed analytically. The scattered photons have been detected by a properly shielded NaI (Tl) gamma ray detector placed at different angle to the incident beam. The saturation thickness at which the number of multiply scattered events saturates has been measured. The signal-to-noise ratio and multiple scatter fractions have been found to be decreasing with increasing target thickness. The self-absorption correction factor improves the multiply scattered photon intensity but not the saturation thickness. The same experiment has been repeated with HPGe detector at 90° scattering angle. The results obtained with NaI (Tl) and HPGe detector show the same trend. The experimental results have been found to support the Monte Carlo calculations

    Experimental Spinal Fusion With Recombinant Human Bone Morphogenetic Protein-2 Without Decortication of Osseous Elements

    Get PDF
    Study Design. L4-L5 intertransverse process fusions were produced with 58 μg, 230 μg, or 920 μg of recombinant human bone morphogenetic protein-2 in 20 dogs. Eleven had traditional decortication of posterior elements before insertion of the implant. Nine were left undecorticated. All animals were evaluated 3 months after surgery. Objectives. To determine whether decortication is a prerequisite for successful fusion in the presence of osteoinductive proteins such as bone morphogenetic protein-2. Summary of Background Data. Recombinant osteoinductive proteins can induce de novo bone in ectopic soft-tissue sites in the absence of bone marrow elements. Traditional methods for achieving spinal fusion rely on exposure of bone marrow through decortication to facilitate osteogenesis. It is hypothesized that the presence of an implanted osteoinductive protein obviates the need for exposure and release of host inductive factors. Methods. Recombinant human bone morphogenetic protein-2-induced intertransverse process fusions were performed with and without decortication. Fusion sites were evaluated by computed tomography imaging, high-resolution radiography, manual testing, mechanical testing, and histologic analysis. Results. One hundred percent of decorticated spines and 89% of undecorticated spines were clinically fused by 3 months. Ninety-one percent of decorticated spines and 78% of undecorticated specimens exhibited bilateral transverse process osseous bridging. The only spines that failed to achieve solid bilateral arthrodesis were in the lowest dose group. With the higher two doses, there was histologic evidence of osseous continuity between the fusion mass and undecorticated transverse processes. Conclusions. There were no statistical differences in clinical and radiographic fusion rates between decorticated and undecorticated sites. With higher doses of recombinant human bone morphogenetic protein-2, there was little histologic distinction between fusions in decorticated versus undecorticated spines

    Histologic Evaluation of the Efficacy of rhBMP-2 Compared With Autograft Bone in Sheep Spinal Anterior Interbody Fusion

    Get PDF
    Study Design. The sheep anterior lumbar spinal fusion model was used to study the efficacy of recombinant human bone morphogenetic protein-2 (rhBMP-2)–collagen composite in comparison with autograft to enhance spinal interbody fusion. Comparisons were drawn from temporal radiographic and end-point biomechanical and histologic data. Objective. To analyze histologically the ability of rhBMP-2 to achieve complete arthrodesis between vertebral bodies. Summary of Background Data. Studies using rhBMP for enhancement of anterior interbody fusion have used numerous endpoints. However, systematic histologic evaluation of the fusion has not been conducted. Methods. Twelve sheep underwent single-level anterior lumbar interbody fusion performed with a cylindrical fenestrated titanium interbody fusion device (INTER FIX, Medtronic Sofamor Danek, Inc., Memphis, TN). The device was filled either with rhBMP-2–collagen (n = 6) or autogenous iliac crest bone graft (n = 6). Radiologic evaluation was carried out at 2-month intervals, and all sheep were killed 6 months after surgery. Nondestructive biomechanical testing for stiffness to flexion, extension, and lateral bending moments, un-decalcified histology, and qualitative and quantitative histologic evaluation were performed. Results. Radiographs revealed a bony bridge anterior to the cage in five of six rhBMP-2-treated animals, whereas it was present only in one of five in the autogenous bone graft group. Segments treated with rhBMP-2 were 20% stiffer in flexion than autograft-treated segments at 6 months. Six of six in the rhBMP-2 group and two of six in the autograft group showed complete fusion. There was a significantly higher rate of bony continuity observed at the fenestrations of the rhBMP-2 group. Three times more number of cage fenestrations in the rhBMP-2 group demonstrated “all-bone” when compared with the autograft group (P \u3c 0.001). Further, the scar tissue in and around the autograft-treated cages was 16-fold more (P \u3c 0.01) than that seen for rhBMP-2-treated cages. Conclusions. The study demonstrates that rhBMP-2 can lead to earlier radiologic fusion and a more consistent increased stiffness of the segments when compared with autograft in sheep anterior lumbar interbody fusion. Furthermore, a three times higher histologic fusion rate is attainable with significantly reduced fibrous tissue around the implant when rhBMP-2 is used

    Energy Dependence of Parameters Characterizing Multiply Backscattering of Gamma Photons

    Get PDF
    The present studies aimed to investigate the effects of energy dependence of parameters characterizing multiply backscattering of gamma photons. The numbers of multiply backscattered events are found to be increasing with thickness of copper target, and saturate for a particular thickness known as saturation thickness. The saturation thickness is found to be decreasing with increase in incident gamma photon energy, and also is not altered by the variation in collimator opening. The number, energy and dose albedos, characterizing the reflection probability of a material, are also evaluated. For each of the incident gamma photon energy, the number and energy albedos show an increase with increasing target thickness, and finally saturate. Monte Carlo calculations support the results of present experimental work

    Effective Atomic Number Dependence of Radiological Parameters of Some Organic Compounds at 122 KeV Gamma Rays

    Get PDF
    Mass attenuation coefficient is a fundamental parameter of radiation interaction, from which the other radiological parameters like half Value Layer [HVL], tenth Value Layer [TVL], total atomic and electronic cross-sections, mass energy absorption coefficient, KERMA, CT number and effective atomic number are deduced. These parameters are extensively required in a number of fields such as diagnostic radiology, gamma ray spectroscopy, fluorescence analysis and reactor shielding. In the present work, mass attenuation coefficients are determined experimentally for some organic compounds at 122 keV incident photons using narrow-beam transmission geometry to establish a relation between effective atomic number (Zeff) and other deduced parameters. The experimental data for all these parameters are compared with the values deduced from WinXcom software package and are found to agree within experimental estimated errors. This study gives some insight about the photon interaction in some organic compounds whose effective atomic numbers match with some human body fluids
    corecore