4,899 research outputs found

    Pose and Shape Reconstruction of a Noncooperative Spacecraft Using Camera and Range Measurements

    Get PDF
    Recent interest in on-orbit proximity operations has pushed towards the development of autonomous GNC strategies. In this sense, optical navigation enables a wide variety of possibilities as it can provide information not only about the kinematic state but also about the shape of the observed object. Various mission architectures have been either tested in space or studied on Earth. The present study deals with on-orbit relative pose and shape estimation with the use of a monocular camera and a distance sensor. The goal is to develop a filter which estimates an observed satellite's relative position, velocity, attitude, and angular velocity, along with its shape, with the measurements obtained by a camera and a distance sensor mounted on board a chaser which is on a relative trajectory around the target. The filter's efficiency is proved with a simulation on a virtual target object. The results of the simulation, even though relevant to a simplified scenario, show that the estimation process is successful and can be considered a promising strategy for a correct and safe docking maneuver

    Equivariant KK-theory of GKM bundles

    Get PDF
    Given a fiber bundle of GKM spaces, π ⁣:MB\pi\colon M\to B, we analyze the structure of the equivariant KK-ring of MM as a module over the equivariant KK-ring of BB by translating the fiber bundle, π\pi, into a fiber bundle of GKM graphs and constructing, by combinatorial techniques, a basis of this module consisting of KK-classes which are invariant under the natural holonomy action on the KK-ring of MM of the fundamental group of the GKM graph of BB. We also discuss the implications of this result for fiber bundles π ⁣:MB\pi\colon M\to B where MM and BB are generalized partial flag varieties and show how our GKM description of the equivariant KK-ring of a homogeneous GKM space is related to the Kostant-Kumar description of this ring.Comment: 15 page

    Simultaneous multi-band detection of Low Surface Brightness galaxies with Markovian modelling

    Get PDF
    We present an algorithm for the detection of Low Surface Brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings - typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. To assess the robustness of our method, the method was applied to a set of 18 B and I band images (covering 1.3 square degrees in total) of the Virgo cluster. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (i) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (ii) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ~20% more mock LSB galaxies and ~40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is reached for sources with r_e > 3" at a mean surface brightness level of mu_g=27.7 mag/arcsec^2 and a central surface brightness of mu^0 g=26.7 mag/arcsec^2. About 10% of the false positives are artifacts, the rest being background galaxies. We have found our method to be complementary to the application of matched filters and an optimized use of SExtractor, and to have the following advantages: it is scale-free, can be applied simultaneously to several bands, and is well adapted for crowded regions on the sky.Comment: 39 pages, 18 figures, accepted for publication in A

    Temperature Chaos in Two-Dimensional Ising Spin Glasses with Binary Couplings: a Further Case for Universality

    Full text link
    We study temperature chaos in a two-dimensional Ising spin glass with random quenched bimodal couplings, by an exact computation of the partition functions on large systems. We study two temperature correlators from the total free energy and from the domain wall free energy: in the second case we detect a chaotic behavior. We determine and discuss the chaos exponent and the fractal dimension of the domain walls.Comment: 5 pages, 6 postscript figures; added reference

    Recurrent network activity drives striatal synaptogenesis

    Get PDF
    Neural activity during development critically shapes postnatal wiring of the mammalian brain. This is best illustrated by the sensory systems, in which the patterned feed-forward excitation provided by sensory organs and experience drives the formation of mature topographic circuits capable of extracting specific features of sensory stimuli1,2. In contrast, little is known about the role of early activity in the development of the basal ganglia, a phylogenetically ancient group of nuclei fundamentally important for complex motor action and reward-based learning3,4. These nuclei lack direct sensory input and are only loosely topographically organized5,6, forming interlocking feed-forward and feed-back inhibitory circuits without laminar structure. Here we use transgenic mice and viral gene transfer methods to modulate neurotransmitter release and neuronal activity in vivo in the developing striatum. We find that the balance of activity among the two inhibitory and antagonist pathways in the striatum regulates excitatory innervation of the basal ganglia during development. These effects indicate that the propagation of activity through a multi-stage network regulates the wiring of the basal ganglia, revealing an important role of positive feedback in driving network maturation

    ERK and p38 MAPK Activities Determine Sensitivity to PI3K/mTOR Inhibition via Regulation of MYC and YAP

    Get PDF
    Aberrant activation of the PI3K/mTOR pathway is a common feature of many cancers and an attractive target for therapy, but resistance inevitably evolves as is the case for any cancer cell-targeted therapy. In animal tumor models, chronic inhibition of PI3K/mTOR initially inhibits tumor growth, but over time, tumor cells escape inhibition. In this study, we identified a context-dependent mechanism of escape whereby tumor cells upregulated the proto-oncogene transcriptional regulators c-MYC and YAP1. This mechanism was dependent on both constitutive ERK activity as well as inhibition of the stress kinase p38. Inhibition of p38 relieved proliferation arrest and allowed upregulation of MYC and YAP through stabilization of CREB. These data provide new insights into cellular signaling mechanisms that influence resistance to PI3K/mTOR inhibitors. Furthermore, they suggest that therapies that inactivate YAP or MYC or augment p38 activity could enhance the efficacy of PI3K/mTOR inhibitors.National Institutes of Health (U.S.) (Grant R01CA103866)National Institutes of Health (U.S.) (Grant AI47389
    corecore