22,708 research outputs found

    Time variability of accretion flows: effects of the adiabatic index and gas temperature

    Full text link
    We report on next phase of our study of rotating accretion flows onto black holes. We consider hydrodynamical (HD) accretion flows with a spherically symmetric density distribution at the outer boundary but with spherical symmetry broken by the introduction of a small, latitude-dependent angular momentum. We study accretion flows by means of numerical two-dimensional, axisymmetric, HD simulations for variety of the adiabatic index, γ\gamma and the gas temperature at infinity, cc_\infty. Our work is an extension of work done by Proga & Begelman who consider models for only γ=5/3\gamma=5/3. Our main result is that the flow properties such as the topology of the sonic surface and time behavior strongly depend on γ\gamma but little on cc_\infty. In particular, for 1<γ<5/31 < \gamma < 5/3, the mass accretion rate shows large amplitude, slow time-variability which is a result of mixing between slow and fast rotating gas. This temporal behavior differs significantly from that in models with \gamma\simless 5/3 where the accretion rate is relatively constant and from that in models with \gamma\simgreat 1 where the accretion exhibits small amplitude quasi-periodic oscillations. The key parameter responsible for the differences is the sound speed of the accretion flow which in turn determines whether the flow is dominated by gas pressure, radiation pressure or rotation. Despite these differences the time-averaged mass accretion rate in units of the corresponding Bondi rate is a weak function of γ\gamma and cc_\infty.Comment: 31 pages, 14 figures, accepted for publication in ApJ, for full resolution version goto http://users.camk.edu.pl/mmosc/ms.pd

    The X-ray Outburst of H1743-322: High-Frequency QPOs with a 3:2 Frequency Ratio

    Full text link
    We observed the 2003 X-ray outburst of H1743-322 in a series of 130 pointed observation with RXTE. We searched individual observations for high-frequency QPOs (HFQPOs) and found only weak or marginal detections near 240 and 160 Hz. We next grouped the observations in several different ways and computed the average power-density spectra (PDS) in a search for further evidence of HFQPOs. This effort yielded two significant results for those observations defined by the presence of low-frequency QPOs (0.1-20 Hz) and an absence of ``band-limited'' power continua: (1) The 9 time intervals with the highest 7-35 keV count rates yielded an average PDS with a QPO at 166±5166 \pm 5 Hz. (4.1σ4.1 \sigma; 3--35 keV); and (2) a second group with lower 7-35 keV count rates (26 intervals) produced an average PDS with a QPO at 242±3242 \pm 3 Hz (6.0σ6.0 \sigma; 7--35 keV). The ratio of these two frequencies is 1.46±0.051.46 \pm 0.05. This finding is consistent with results obtained for three other black hole systems that exhibit commensurate HFQPOs in a 3:2 ratio. Furthermore, the occurrence of H1743-322's slower HFQPO at times of higher X-ray luminosity closely resembles the behavior of XTE J1550-564 and GRO J1655-40. We discuss our results in terms of a resonance model that invokes frequencies set by general relativity for orbital motions near a black-hole event horizon.Comment: 12 pages, 3 figures, submitted to Ap

    Existence of Density Functionals for Excited States and Resonances

    Get PDF
    We show how every bound state of a finite system of identical fermions, whether a ground state or an excited one, defines a density functional. Degeneracies created by a symmetry group can be trivially lifted by a pseudo-Zeeman effect. When complex scaling can be used to regularize a resonance into a square integrable state, a DF also exists.Comment: 4 pages, no figure

    Superconductivity in Boron under pressure - why are the measured Tc_c's so low?

    Full text link
    Using the full potential linear muffin-tin orbitals (FP-LMTO) method we examine the pressure-dependence of superconductivity in the two metallic phases of Boron: bct and fcc. Linear response calculations are carried out to examine the phonon frequencies and electron-phonon coupling for various lattice parameters, and superconducting transition temperatures are obtained from the Eliashberg equation. In both bct and fcc phases the superconducting transition temperature Tc_c is found to decrease with increasing pressure, due to stiffening of phonons with an accompanying decrease in electron-phonon coupling. This is in contrast to a recent report, where Tc_c is found to increase with pressure. Even more drastic is the difference between the measured Tc_c, in the range 4-11 K, and the calculated values for both bct and fcc phases, in the range 60-100 K. The calculation reveals that the transition from the fcc to bct phase, as a result of increasing volume or decreasing pressure, is caused by the softening of the X-point transverse phonons. This phonon softening also causes large electron-phonon coupling for high volumes in the fcc phase, resulting in coupling constants in excess of 2.5 and Tc_c nearing 100 K. We discuss possible causes as to why the experiment might have revealed Tc_c's much lower than what is suggested by the present study. The main assertion of this paper is that the possibility of high Tc_c, in excess of 50 K, in high pressure pure metallic phases of boron cannot be ruled out, thus substantiating the need for further experimental investigations of the superconducting properties of high pressure pure phases of boron.Comment: 16 pages, 8 figures, 1 Tabl

    Derivation of Green's Function of Spin Calogero-Sutherland Model by Uglov's Method

    Full text link
    Hole propagator of spin 1/2 Calogero-Sutherland model is derived using Uglov's method, which maps the exact eigenfunctions of the model, called Yangian Gelfand-Zetlin basis, to a limit of Macdonald polynomials (gl_2-Jack polynomials). To apply this mapping method to the calculation of 1-particle Green's function, we confirm that the sum of the field annihilation operator on Yangian Gelfand-Zetlin basis is transformed to the field annihilation operator on gl_2-Jack polynomials by the mapping. The resultant expression for hole propagator for finite-size system is written in terms of renormalized momenta and spin of quasi-holes and the expression in the thermodynamic limit coincides with the earlier result derived by another method. We also discuss the singularity of the spectral function for a specific coupling parameter where the hole propagator of spin Calogero-Sutherland model becomes equivalent to dynamical colour correlation function of SU(3) Haldane-Shastry model.Comment: 36 pages, 8 figure

    Corotation Resonance and Diskoseismology Modes of Black Hole Accretion Disks

    Full text link
    We demonstrate that the corotation resonance affects only some non-axisymmetric g-mode oscillations of thin accretion disks, since it is located within their capture zones. Using a more general (weaker radial WKB approximation) formulation of the governing equations, such g-modes, treated as perfect fluid perturbations, are shown to formally diverge at the position of the corotation resonance. A small amount of viscosity adds a small imaginary part to the eigenfrequency which has been shown to induce a secular instability (mode growth) if it acts hydrodynamically. The g-mode corotation resonance divergence disappears, but the mode magnitude can remain largest at the place of the corotation resonance. For the known g-modes with moderate values of the radial mode number and axial mode number (and any vertical mode number), the corotation resonance lies well outside their trapping region (and inside the innermost stable circular orbit), so the observationally relevant modes are unaffected by the resonance. The axisymmetric g-mode has been seen by Reynolds & Miller in a recent inviscid hydrodynamic accretion disk global numerical simulation. We also point out that the g-mode eigenfrequencies are approximately proportional to m for axial mode numbers |m|>0.Comment: 16 pages, no figures. Submitted to The Astrophysical Journa

    Epicyclic oscillations of non-slender fluid tori around Kerr black holes

    Full text link
    Considering epicyclic oscillations of pressure-supported perfect fluid tori orbiting Kerr black holes we examine non-geodesic (pressure) effects on the epicyclic modes properties. Using a perturbation method we derive fully general relativistic formulas for eigenfunctions and eigenfrequencies of the radial and vertical epicyclic modes of a slightly non-slender, constant specific angular momentum torus up to second-order accuracy with respect to the torus thickness. The behaviour of the axisymmetric and lowest-order (m=±1m=\pm 1) non-axisymmetric epicyclic modes is investigated. For an arbitrary black hole spin we find that, in comparison with the (axisymmetric) epicyclic frequencies of free test particles, non-slender tori receive negative pressure corrections and exhibit thus lower frequencies. Our findings are in qualitative agreement with the results of a recent pseudo-Newtonian study of analogous problem defined within the Paczy{\'n}ski-Wiita potential. Implications of our results on the high-frequency QPO models dealing with epicyclic oscillations are addressed.Comment: 24 pages, 8 figure

    Partially Solvable Anisotropic t-J Model with Long-Range Interactions

    Full text link
    A new anisotropic t-J model in one dimension is proposed which has long-range hopping and exchange. This t-J model is only partially solvable in contrast to known integrable models with long-range interaction. In the high-density limit the model reduces to the XXZ chain with the long-range exchange. Some exact eigenfunctions are shown to be of Jastrow-type if certain conditions for an anisotropy parameter are satisfied. The ground state as well as the excitation spectrum for various cases of the anisotropy parameter and filling are derived numerically. It is found that the Jastrow-type wave function is an excellent trial function for any value of the anisotropy parameter.Comment: 10 pages, 3 Postscript figure

    Loschmidt echo and fidelity decay near an exceptional point

    Get PDF
    Non-Hermitian classical and open quantum systems near an exceptional point (EP) are known to undergo strong deviations in their dynamical behavior under small perturbations or slow cycling of parameters as compared to Hermitian systems. Such a strong sensitivity is at the heart of many interesting phenomena and applications, such as the asymmetric breakdown of the adiabatic theorem, enhanced sensing, non-Hermitian dynamical quantum phase transitions and photonic catastrophe. Like for Hermitian systems, the sensitivity to perturbations on the dynamical evolution can be captured by Loschmidt echo and fidelity after imperfect time reversal or quench dynamics. Here we disclose a rather counterintuitive phenomenon in certain non-Hermitian systems near an EP, namely the deceleration (rather than acceleration) of the fidelity decay and improved Loschmidt echo as compared to their Hermitian counterparts, despite large (non-perturbative) deformation of the energy spectrum introduced by the perturbations. This behavior is illustrated by considering the fidelity decay and Loschmidt echo for the single-particle hopping dynamics on a tight-binding lattice under an imaginary gauge field.Comment: 11 pages, 6 figures, to appear in Annalen der Physi

    Spectrum of Optically Thin Advection Dominated Accretion Flow around a Black Hole: Application to Sgr A*

    Full text link
    The global structure of optically thin advection dominated accretion flows which are composed of two-temperature plasma around black holes is calculated. We adopt the full set of basic equations including the advective energy transport in the energy equation for the electrons. The spectra emitted by the optically thin accretion flows are also investigated. The radiation mechanisms which are taken into accout are bremsstrahlung, synchrotron emission, and Comptonization. The calculation of the spectra and that of the structure of the accretion flows are made to be completely consistent by calculating the radiative cooling rate at each radius. As a result of the advection domination for the ions, the heat transport from the ions to the electrons becomes practically zero and the radiative cooling balances with the advective heating in the energy equation of the electrons. Following up on the successful work of Narayan et al. (1995), we applied our model to the spectrum of Sgr A*. We find that the spectrum of Sgr A* is explained by the optically thin advection dominated accretion flow around a black hole of the mass M_bh=10^6 M_sun. The parameter dependence of the spectrum and the structure of the accretion flows is also discussed.Comment: AAS LaTeX file; 26 pages; 12 ps figures; to be published in ApJ. PDF files are obtainable via following anonymous ftp. ftp://ftp.kusastro.kyoto-u.ac.jp/pub/manmoto/preprint/spec_sgrA.tar.g
    corecore