281 research outputs found
Zero-point momentum in Complex media
In this work we apply field regularization techniques to formulate a number
of new phenomena related to momentum induced by electromagnetic zero-point
fluctuations. We discuss the zero-point momentum associated with
magneto-electric media, with moving media, and with magneto-chiral media.Comment: submitted to EPJ
Laser induced breakdown of the magnetic field reversal symmetry in the propagation of unpolarized light
We show how a medium, under the influece of a coherent control field which is
resonant or close to resonance to an appropriate atomic transition, can lead to
very strong asymmetries in the propagation of unpolarized light when the
direction of the magnetic field is reversed. We show how EIT can be used to
mimic effects occuring in natural systems and that EIT can produce very large
asymmetries as we use electric dipole allowed transitions. Using density matrix
calculations we present results for the breakdown of the magnetic field
reversal symmetry for two different atomic configurations.Comment: RevTex, 6 pages, 10 figures, Two Column format, submitted to Phys.
Rev.
Observation of the Inverse Cotton-Mouton Effect
We report the observation of the Inverse Cotton-Mouton Effect (ICME) i.e. a
magnetization induced in a medium by non resonant linearly polarized light
propagating in the presence of a transverse magnetic field. We present a
detailed study of the ICME in a TGG crystal showing the dependence of the
measured effect on the light intensity, the optical polarization, and on the
external magnetic field. We derive a relation between the Cotton-Mouton and
Inverse Cotton-Mouton effects that is roughly in agreement with existing
experimental data. Our results open the way to applications of the ICME in
optical devices
Chirality in charge-transfer salts of BEDT-TTF of tris(oxalato)chromate(III)
Crystallisation from chiral electrolyte (R)-(−)-carvone has produced three new chiral semiconducting salts of BEDT-TTF from racemic anion tri(oxalato)chromate(III)
About the connection between vacuum birefringence and the light-light scattering amplitude
Birefringence phenomena stemming from vacuum polarization are revisited in
the framework of coherent scattering. Based on photon-photon scattering, our
analysis brings out the direct connection between this process and vacuum
birefringence. We show how this procedure can be extended to the Kerr and the
Cotton-Mouton birefringences in vacuum, thus providing a unified treatment of
various polarization schemes, including those involving static fields
Universal magnetic structure of the half-magnetization phase in Cr-based spinels
Using an elastic neutron scattering technique under a pulsed magnetic field
up to 30 T, we determined the magnetic structure in the half-magnetization
plateau phase in the spinel CdCrO. The magnetic structure has a cubic
32 symmetry, which is the same as that observed in HgCrO. This
suggests that there is a universal field induced spin-lattice coupling
mechanism at work in the Cr-based spinels.Comment: 4 pages, 4 figure
High frequency magnetic oscillations of the organic metal -(ET)ZnBr(CHCl) in pulsed magnetic field of up to 81 T
De Haas-van Alphen oscillations of the organic metal
-(ET)ZnBr(CHCl) are studied in pulsed magnetic
fields up to 81 T. The long decay time of the pulse allows determining reliable
field-dependent amplitudes of Fourier components with frequencies up to several
kiloteslas. The Fourier spectrum is in agreement with the model of a linear
chain of coupled orbits. In this model, all the observed frequencies are linear
combinations of the frequency linked to the basic orbit and to the
magnetic-breakdown orbit .Comment: 6 pages, 4 figure
Coherent Backscattering of light in a magnetic field
This paper describes how coherent backscattering is altered by an external
magnetic field. In the theory presented, magneto-optical effects occur inside
Mie scatterers embedded in a non-magnetic medium. Unlike previous theories
based on point-like scatterers, the decrease of coherent backscattering is
obtained in leading order of the magnetic field using rigorous Mie theory. This
decrease is strongly enhanced in the proximity of resonances, which cause the
path length of the wave inside a scatterer to be increased. Also presented is a
novel analysis of the shape of the backscattering cone in a magnetic field.Comment: 27 pages, 5 figures, Revtex, to appear in Phys. Rev.
- …
