91 research outputs found

    ATP mediates both activation and inhibition of K(ATP) channel activity via cAMP-dependent protein kinase in insulin-secreting cell lines.

    Get PDF
    The single-channel recording technique was employed to investigate the mechanism conferring ATP sensitivity to a metabolite-sensitive K channel in insulin-secreting cells. ATP stimulated channel activity in the 0-10 microM range, but depressed it at higher concentrations. In inside-out patches, addition of the cAMP-dependent protein kinase inhibitor (PKI) reduced channel activity, suggesting that the stimulatory effect of ATP occurs via cAMP-dependent protein kinase-mediated phosphorylation. Raising ATP between 10 and 500 microM in the presence of exogenous PKI progressively reduced the channel activity; it is proposed that this inactivation results from a reduction in kinase activity owing to an ATP-dependent binding of PKI or a protein with similar inhibitory properties to the kinase. A model describing the effects of ATP was developed, incorporating these two separate roles for the nucleotide. Assuming that the efficacy of ATP in controlling the channel activity depends upon the relative concentrations of inhibitor and catalytic subunit associated with the membrane, our model predicts that the channel sensitivity to ATP will vary when the ratio of these two modulators is altered. Based upon this, it is shown that the apparent discrepancy existing between the sensitivity of the channel to low ATP concentrations in the excised patch and the elevated intracellular level of ATP may be explained by postulating a change in the inhibitor/kinase ratio from 1:1 to 3:2 owing to the loss of protein kinase after patch excision. At a low concentration of ATP (10-20 microM), a nonhydrolyzable ATP analogue, AMP-PNP, enhanced the channel activity when present below 10 microM, whereas the analogue blocked the channel activity at higher concentrations. It is postulated that AMP-PNP inhibits the formation of the kinase-inhibitor complex in the former case, and prevents phosphate transfer in the latter. A similar mechanism would explain the interaction between ATP and ADP which is characterized by enhanced activity at low ADP concentrations and blocking at higher concentrations

    ATP-Sensitive Potassium Channels Exhibit Variance in the Number of Open Channels below the Limit Predicted for Identical and Independent Gating

    Get PDF
    In small cells containing small numbers of ion channels, noise due to stochastic channel opening and closing can introduce a substantial level of variability into the cell's membrane potential. Negatively cooperative interactions that couple a channel's gating conformational change to the conformation of its neighbor(s) provide a potential mechanism for mitigating this variability, but such interactions have not previously been directly observed. Here we show that heterologously expressed ATP-sensitive potassium channels generate noise (i.e., variance in the number of open channels) below the level possible for identical and independent channels. Kinetic analysis with single-molecule resolution supports the interpretation that interchannel negative cooperativity (specifically, the presence of an open channel making a closed channel less likely to open) contributes to the decrease in noise. Functional coupling between channels may be important in modulating stochastic fluctuations in cellular signaling pathways

    PIP2-Binding Site in Kir Channels: Definition by Multiscale Biomolecular Simulations†

    Get PDF
    Phosphatidylinositol bisphosphate (PIP(2)) is an activator of mammalian inwardly rectifying potassium (Kir) channels. Multiscale simulations, via a sequential combination of coarse-grained and atomistic molecular dynamics, enabled exploration of the interactions of PIP(2) molecules within the inner leaflet of a lipid bilayer membrane with possible binding sites on Kir channels. Three Kir channel structures were investigated: X-ray structures of KirBac1.1 and of a Kir3.1-KirBac1.3 chimera and a homology model of Kir6.2. Coarse-grained simulations of the Kir channels in PIP(2)-containing lipid bilayers identified the PIP(2)-binding site on each channel. These models of the PIP(2)-channel complexes were refined by conversion to an atomistic representation followed by molecular dynamics simulation in a lipid bilayer. All three channels were revealed to contain a conserved binding site at the N-terminal end of the slide (M0) helix, at the interface between adjacent subunits of the channel. This binding site agrees with mutagenesis data and is in the proximity of the site occupied by a detergent molecule in the Kir chimera channel crystal. Polar contacts in the coarse-grained simulations corresponded to long-lived electrostatic and H-bonding interactions between the channel and PIP(2) in the atomistic simulations, enabling identification of key side chains

    Membranes with the Same Ion Channel Populations but Different Excitabilities

    Get PDF
    Electrical signaling allows communication within and between different tissues and is necessary for the survival of multicellular organisms. The ionic transport that underlies transmembrane currents in cells is mediated by transporters and channels. Fast ionic transport through channels is typically modeled with a conductance-based formulation that describes current in terms of electrical drift without diffusion. In contrast, currents written in terms of drift and diffusion are not as widely used in the literature in spite of being more realistic and capable of displaying experimentally observable phenomena that conductance-based models cannot reproduce (e.g. rectification). The two formulations are mathematically related: conductance-based currents are linear approximations of drift-diffusion currents. However, conductance-based models of membrane potential are not first-order approximations of drift-diffusion models. Bifurcation analysis and numerical simulations show that the two approaches predict qualitatively and quantitatively different behaviors in the dynamics of membrane potential. For instance, two neuronal membrane models with identical populations of ion channels, one written with conductance-based currents, the other with drift-diffusion currents, undergo transitions into and out of repetitive oscillations through different mechanisms and for different levels of stimulation. These differences in excitability are observed in response to excitatory synaptic input, and across different levels of ion channel expression. In general, the electrophysiological profiles of membranes modeled with drift-diffusion and conductance-based models having identical ion channel populations are different, potentially causing the input-output and computational properties of networks constructed with these models to be different as well. The drift-diffusion formulation is thus proposed as a theoretical improvement over conductance-based models that may lead to more accurate predictions and interpretations of experimental data at the single cell and network levels

    Extensive cross-disciplinary analysis of biological and chemical control of Calanus finmarchicus reproduction during an aldehyde forming diatom bloom in mesocosms

    Get PDF
    Egg and faecal pellet production and egg hatching success of the calanoid copepod Calanus finmarchicus were monitored over a period of 14 days (14-28 April, 2008) while fed water from 4 differently treated mesocosms and ambient water. Two of the mesocosms used were inoculated with the polyunsaturated aldehyde (PUA)-producing diatom Skeletonema marinoi, while 2 received only nutrient additions with or without silica. The mesocosms developed blooms of S. marinoi, mixed diatoms or the haptophyte Phaeocystis pouchetii, respectively. Faecal pellet production of C. finmarchicus increased with increasing food availability. Egg production increased with time in all mesocosms to a maximum single female production of 232 eggs female(-1) day(-1) (average of 90 eggs female(-1) day(-1)) and followed the development of ciliates and P. pouchetii, but was not affected by the observed high (up to 15 nmol L(-1)) PUA production potential of the phytoplankton. The hatching success of the eggs produced on the mesocosm diets was high (78-96%) and was not affected by either aldehydes in the maternal diet or exposure to the dissolved aldehydes in the water

    Regulation by cell metabolism and adenine nucleotides of a K channel in insulin-secreting B cells (RIN m5F).

    No full text
    • …
    corecore