3,623 research outputs found
The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster
It has long been known that many flying insects use visual cues to orient with respect to the wind and to control their groundspeed in the face of varying wind conditions. Much less explored has been the role of mechanosensory cues in orienting insects relative to the ambient air. Here we show that Drosophila melanogaster, magnetically tethered so as to be able to rotate about their yaw axis, are able to detect and orient into a wind, as would be experienced during forward flight. Further, this behavior is velocity dependent and is likely subserved, at least in part, by the Johnston's organs, chordotonal organs in the antennae also involved in near-field sound detection. These wind-mediated responses may help to explain how flies are able to fly forward despite visual responses that might otherwise inhibit this behavior. Expanding visual stimuli, such as are encountered during forward flight, are the most potent aversive visual cues known for D. melanogaster flying in a tethered paradigm. Accordingly, tethered flies strongly orient towards a focus of contraction, a problematic situation for any animal attempting to fly forward. We show in this study that wind stimuli, transduced via mechanosensory means, can compensate for the aversion to visual expansion and thus may help to explain how these animals are indeed able to maintain forward flight
Efficient operation of a high-power X-band gyroklystron
Experimental studies of amplification in a two-cavity X-band gyroklystron are reported. The system utilizes a thermionic magnetron injection gun at voltages up to 440 kV and currents up to 190 A in 1-μs pulses. Optimum performance is achieved by tapering the magnetic-field profile. Peak powers of 20 MW in the TE01 mode at 9.87 GHz are measured with calibrated crystals and with methanol calorimetry. Resultant efficiencies are in excess of 31% and large-signal gains surpass 26 dB. The experimental results are in good agreement with simulated results from a partially self-consistent, nonlinear, steady-state code
Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms
PURPOSE: We develop a practical, iterative algorithm for image-reconstruction
in under-sampled tomographic systems, such as digital breast tomosynthesis
(DBT).
METHOD: The algorithm controls image regularity by minimizing the image total
-variation (TpV), a function that reduces to the total variation when
or the image roughness when . Constraints on the image, such as
image positivity and estimated projection-data tolerance, are enforced by
projection onto convex sets (POCS). The fact that the tomographic system is
under-sampled translates to the mathematical property that many widely varied
resultant volumes may correspond to a given data tolerance. Thus the
application of image regularity serves two purposes: (1) reduction of the
number of resultant volumes out of those allowed by fixing the data tolerance,
finding the minimum image TpV for fixed data tolerance, and (2) traditional
regularization, sacrificing data fidelity for higher image regularity. The
present algorithm allows for this dual role of image regularity in
under-sampled tomography.
RESULTS: The proposed image-reconstruction algorithm is applied to three
clinical DBT data sets. The DBT cases include one with microcalcifications and
two with masses.
CONCLUSION: Results indicate that there may be a substantial advantage in
using the present image-reconstruction algorithm for microcalcification
imaging.Comment: Submitted to Medical Physic
High-power operation of a K-band second harmonic gyroklystron
Amplification studies of a two-cavity second-harmonic gyroklystron are reported. A magnetron injection gun produces a 440 kV, 200–245 A, 1 μs beam with an average perpendicular-to-parallel velocity ratio slightly less than 1. The TE011 input cavity is driven near 9.88 GHz and the TE021 output cavity resonates near 19.76 GHz. Peak powers exceeding 21 MW are achieved with an efficiency near 21% and a large signal gain above 25 dB. This performance represents the current state of the art for gyroklystrons in terms of the peak power normalized to the output wavelength squared
Correlation length scalings in fusion edge plasma turbulence computations
The effect of changes in plasma parameters, that are characteristic near or
at an L-H transition in fusion edge plasmas, on fluctuation correlation lengths
are analysed by means of drift-Alfven turbulence computations. Scalings by
density gradient length, collisionality, plasma beta, and by an imposed shear
flow are considered. It is found that strongly sheared flows lead to the
appearence of long-range correlations in electrostatic potential fluctuations
parallel and perpendicular to the magnetic field.Comment: Submitted to "Plasma Physics and Controlled Fusion
Bosonization of current-current interactions
We discuss a generalization of the conventional bosonization procedure to the
case of current-current interactions which get their natural representation in
terms of current instead of fermion number density operators. A consistent
bosonization procedure requires a geometrical quantization of the hamiltonian
action of on its coadjoint orbits. An integrable example of a
nontrivial realization of this symmetry is presented by the Calogero-Sutherland
model. For an illustrative nonintegrable example we consider transverse gauge
interactions and calculate the fermion Green function.Comment: 15 pages, TeX, C Version 3.0, Princeton preprin
An Assessment to Benchmark the Seismic Performance of a Code-Conforming Reinforced-Concrete Moment-Frame Building
This report describes a state-of-the-art performance-based earthquake engineering methodology
that is used to assess the seismic performance of a four-story reinforced concrete (RC) office
building that is generally representative of low-rise office buildings constructed in highly seismic
regions of California. This “benchmark” building is considered to be located at a site in the Los
Angeles basin, and it was designed with a ductile RC special moment-resisting frame as its
seismic lateral system that was designed according to modern building codes and standards. The
building’s performance is quantified in terms of structural behavior up to collapse, structural and
nonstructural damage and associated repair costs, and the risk of fatalities and their associated
economic costs. To account for different building configurations that may be designed in
practice to meet requirements of building size and use, eight structural design alternatives are
used in the performance assessments.
Our performance assessments account for important sources of uncertainty in the ground
motion hazard, the structural response, structural and nonstructural damage, repair costs, and
life-safety risk. The ground motion hazard characterization employs a site-specific probabilistic
seismic hazard analysis and the evaluation of controlling seismic sources (through
disaggregation) at seven ground motion levels (encompassing return periods ranging from 7 to
2475 years). Innovative procedures for ground motion selection and scaling are used to develop
acceleration time history suites corresponding to each of the seven ground motion levels.
Structural modeling utilizes both “fiber” models and “plastic hinge” models. Structural
modeling uncertainties are investigated through comparison of these two modeling approaches,
and through variations in structural component modeling parameters (stiffness, deformation
capacity, degradation, etc.). Structural and nonstructural damage (fragility) models are based on
a combination of test data, observations from post-earthquake reconnaissance, and expert
opinion. Structural damage and repair costs are modeled for the RC beams, columns, and slabcolumn connections. Damage and associated repair costs are considered for some nonstructural
building components, including wallboard partitions, interior paint, exterior glazing, ceilings,
sprinkler systems, and elevators. The risk of casualties and the associated economic costs are
evaluated based on the risk of structural collapse, combined with recent models on earthquake
fatalities in collapsed buildings and accepted economic modeling guidelines for the value of
human life in loss and cost-benefit studies.
The principal results of this work pertain to the building collapse risk, damage and repair
cost, and life-safety risk. These are discussed successively as follows.
When accounting for uncertainties in structural modeling and record-to-record variability
(i.e., conditional on a specified ground shaking intensity), the structural collapse probabilities of
the various designs range from 2% to 7% for earthquake ground motions that have a 2%
probability of exceedance in 50 years (2475 years return period). When integrated with the
ground motion hazard for the southern California site, the collapse probabilities result in mean
annual frequencies of collapse in the range of [0.4 to 1.4]x10
-4
for the various benchmark
building designs. In the development of these results, we made the following observations that
are expected to be broadly applicable:
(1) The ground motions selected for performance simulations must consider spectral
shape (e.g., through use of the epsilon parameter) and should appropriately account for
correlations between motions in both horizontal directions;
(2) Lower-bound component models, which are commonly used in performance-based
assessment procedures such as FEMA 356, can significantly bias collapse analysis results; it is
more appropriate to use median component behavior, including all aspects of the component
model (strength, stiffness, deformation capacity, cyclic deterioration, etc.);
(3) Structural modeling uncertainties related to component deformation capacity and
post-peak degrading stiffness can impact the variability of calculated collapse probabilities and
mean annual rates to a similar degree as record-to-record variability of ground motions.
Therefore, including the effects of such structural modeling uncertainties significantly increases
the mean annual collapse rates. We found this increase to be roughly four to eight times relative
to rates evaluated for the median structural model;
(4) Nonlinear response analyses revealed at least six distinct collapse mechanisms, the
most common of which was a story mechanism in the third story (differing from the multi-story
mechanism predicted by nonlinear static pushover analysis);
(5) Soil-foundation-structure interaction effects did not significantly affect the structural
response, which was expected given the relatively flexible superstructure and stiff soils.
The potential for financial loss is considerable. Overall, the calculated expected annual
losses (EAL) are in the range of 97,000 for the various code-conforming benchmark
building designs, or roughly 1% of the replacement cost of the building (3.5M, the fatality rate translates to an EAL due to
fatalities of 5,600 for the code-conforming designs, and 66,000, the monetary value associated with life loss is small,
suggesting that the governing factor in this respect will be the maximum permissible life-safety
risk deemed by the public (or its representative government) to be appropriate for buildings.
Although the focus of this report is on one specific building, it can be used as a reference
for other types of structures. This report is organized in such a way that the individual core
chapters (4, 5, and 6) can be read independently. Chapter 1 provides background on the
performance-based earthquake engineering (PBEE) approach. Chapter 2 presents the
implementation of the PBEE methodology of the PEER framework, as applied to the benchmark
building. Chapter 3 sets the stage for the choices of location and basic structural design. The subsequent core chapters focus on the hazard analysis (Chapter 4), the structural analysis
(Chapter 5), and the damage and loss analyses (Chapter 6). Although the report is self-contained,
readers interested in additional details can find them in the appendices
Analyse en CLHP des substances produites par le palmier à huile au cours de l'infection par le Fusarium oxysporum f sp elaeidis. Perspectives pour la sélection
Le principe de la technique de chromatographie liquide à haute performance (HPLC) réside en la séparation fine et en la quantification des substances produites dans les racines du palmier à huile non inoculées et inoculées par le Fusarium oxysporum f. sp. elaeidis. Les substances sont détectées par absorption dans l'ultraviolet à 280 nm ce qui permet la mise en évidence des dérivés de l'acide benzoïque, de l'acide cinnamique ou des flavonoïdes. Cette technique a permis d'identifier deux groupes de composés jouant un rôle important dans l'expression de la fusariose : l'un d'eux est corrélé significativement au niveau de tolérance exprimée en prépépinière, le second participe à l'expression de la maladie en fonction des facteurs climatiques. Le but poursuivi est d'analyser les synthèses de ces composés et de comparer les résultats obtenus avec ceux des indices de prépinière, afin de déceler les potentialités de résistance et les croisements qui se montrent sensibles en plantatio
Comparison of CT colonography, colonoscopy, sigmoidoscopy and faecal occult blood tests for the detection of advanced adenoma in an average risk population.
- …
