194 research outputs found

    Subjective versus objective risk in genetic counseling for hereditary breast and/or ovarian cancers

    Get PDF
    Background. Despite the fact that genetic counseling in oncology provides information regarding objective risks, it can be found a contrast between the subjective and objective risk. The aims of this study were to evaluate the accuracy of the perceived risk compared to the objective risk estimated by the BRCApro computer model and to evaluate any associations between medical, demographic and psychological variables and the accuracy of risk perception. Methods. 130 subjects were given medical-demographic file, Cancer and Genetic Risk Perception, Hospital Anxiety-Depression Scale. It was also computed an objective evaluation of the risk by the BRCApro model. Results. The subjective risk was significantly higher than objective risk. The risk of tumour was overestimated by 56%, and the genetic risk by 67%. The subjects with less cancer affected relatives significantly overestimated their risk of being mutation carriers and made a more innacurate estimation than high risk subjects. Conclusion. The description of this sample shows: general overestimation of the risk, inaccurate perception compared to BRCApro calculation and a more accurate estimation in those subjects with more cancer affected relatives (high risk subjects). No correlation was found between the levels of perception of risk and anxiety and depression. Based on our findings, it is worth pursuing improved communication strategies about the actual cancer and genetic risk, especially for subjects at "intermediate and slightly increased risk" of developing an hereditary breast and/or ovarian cancer or of being mutation carrier

    Solution-Based Structural Analysis of the Decaheme Cytochrome, MtrA, by Small-Angle X-ray Scattering and Analytical Ultracentrifugation

    Get PDF
    The potential exploitation of metal-reducing bacteria as a means for environmental cleanup or alternative fuel is an exciting prospect; however, the cellular processes that would allow for these applications need to be better understood. MtrA is a periplasmic decaheme c-type cytochrome from Shewanella oneidensis involved in the reduction of extracellular iron oxides and therefore is a critical element in Shewanella ability to engage in extracellular charge transfer. As a relatively small 333-residue protein, the heme content is surprisingly high. MtrA is believed to obtain electrons from the inner membrane-bound quinol oxidoreductase, CymA, and shuttle them across the outer membrane to MtrC, another decaheme cytochrome that directly interacts with insoluble metal oxides. How MtrA is able to perform this task is a question of interest. Here through the use of two solution-based techniques, small-angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC), we present the first structural analysis of MtrA. Our results establish that between 0.5 and 4 mg/mL, MtrA exists as a monomeric protein that is shaped like an extended molecular “wire” with a maximum protein dimension (D[subscript max]) of 104 Å and a rod-like aspect ratio of 2.2 to 2.5. This study contributes to a greater understanding of how MtrA fulfills its role in the redox processes that must occur before electrons reach the outside of the cell.National Science Foundation (U.S.). (0546323)National Institutes of Health (U.S.) (Grant Number F32GM904862)Howard Hughes Medical Institute. InvestigatorNational Science Foundation (U.S.) (Award DMR- 0936384

    Acceptance tests of Hamamatsu R7081 photomultiplier tubes

    Get PDF
    Photomultiplier tubes (PMTs) are traditionally an integral part of large underground experiments as they measure the light emission from particle interactions within the enclosed detection media. The BUTTON experiment will utilise around 100 PMTs to measure the response of different media suitable for rare event searches. A subset of low-radioactivity 10-inch Hamamatsu R7081 PMTs were tested, characterised, and compared to manufacture certification. This manuscript describes the laboratory tests and analysis of gain, peak-to-valley ratio and dark rate of the PMTs to give an understanding of the charge response, signal-to-noise ratio and dark noise background as an acceptance test of the suitability of these PMTs for water-based detectors. Following the evaluation of these tests, the PMT performance agreed with the manufacturer specifications. These results are imperative for modeling the PMT response in detector simulations and providing confidence in the performance of the devices once installed in the detector underground

    Acceptance tests of Hamamatsu R7081 photomultiplier tubes

    Get PDF
    Photomultiplier tubes (PMTs) are traditionally an integral part of large underground experiments as they measure the light emission from particle interactions within the enclosed detection media. The BUTTON experiment will utilise around 100 PMTs to measure the response of different media suitable for rare event searches. A subset of low-radioactivity 10-inch Hamamatsu R7081 PMTs were tested, characterised, and compared to manufacture certification. This manuscript describes the laboratory tests and analysis of gain, peak-to-valley ratio and dark rate of the PMTs to give an understanding of the charge response, signal-to-noise ratio and dark noise background as an acceptance test of the suitability of these PMTs for water-based detectors. Following the evaluation of these tests, the PMT performance agreed with the manufacturer specifications. These results are imperative for modeling the PMT response in detector simulations and providing confidence in the performance of the devices once installed in the detector underground

    Directionally accelerated detection of an unknown second reactor with antineutrinos for mid-field nonproliferation monitoring

    Get PDF
    When monitoring a reactor site for nuclear nonproliferation purposes, the presence of an unknown or hidden nuclear reactor could be obscured by the activities of a known reactor of much greater power nearby. Thus when monitoring reactor activities by the observation of antineutrino emissions, one must discriminate known background reactor fluxes from possible unknown reactor signals under investigation. To quantify this discrimination, we find the confidence to reject the (null) hypothesis of a single proximal reactor, by exploiting directional antineutrino signals in the presence of a second, unknown reactor. In particular, we simulate the inverse beta decay (IBD) response of a detector filled with a 1 kT fiducial mass of Gadolinium-doped liquid scintillator in mineral oil. We base the detector geometry on that of WATCHMAN, an upcoming antineutrino monitoring experiment soon to be deployed at the Boulby mine in the United Kingdom whose design and deployment will be detailed in a forthcoming white paper. From this simulation, we construct an analytical model of the IBD event distribution for the case of one 4 GWt±2% reactor 25 km away from the detector site, and for an additional, unknown, 35 MWt reactor 3 to 5 km away. The effects of natural-background rejection cuts are approximated. Applying the model, we predict 3σ confidence to detect the presence of an unknown reactor within five weeks, at standoffs of 3 km or nearer. For more distant unknown reactors, the 3σ detection time increases significantly. However, the relative significance of directional sensitivity also increases, providing up to an eight week speedup to detect an unknown reactor at 5 km away. Therefore, directionally sensitive antineutrino monitoring can accelerate the mid-field detection of unknown reactors whose operation might otherwise be masked by more powerful reactors in the vicinity

    Single-molecule spectroscopy of fluorescent proteins

    Full text link

    Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography

    No full text
    Steric constraints, charged interactions and many other forces important to protein structure and function can be explored by mutagenic experiments. Research of this kind has led to a wealth of knowledge about what stabilizes proteins in their folded states. To gain a more complete picture requires that we perturb these structures in a continuous manner, something mutagenesis cannot achieve. With high pressure crystallographic methods it is now possible to explore the detailed properties of proteins while continuously varying thermodynamic parameters. Here, we detail the structural response of the cavity-containing mutant L99A of T4 lysozyme, as well as its pseudo wild-type (WT*) counterpart, to hydrostatic pressure. Surprisingly, the cavity has almost no effect on the pressure response: virtually the same changes are observed in WT* as in L99A under pressure. The cavity is most rigid, while other regions deform substantially. This implies that while some residues may increase the thermodynamic stability of a protein, they may also be structurally irrelevant. As recently shown, the cavity fills with water at pressures above 100 MPa while retaining its overall size. The resultant picture of the protein is one in which conformationally fluctuating side groups provide a liquid-like environment, but which also contribute to the rigidity of the peptide backbone

    The Texas Journal of Agriculture and Natural Resource 16:34-39 (2003) ©Agriculture Consortium of Texas Relationship Between Landscape Aspect and Playa Alignment on the Texas High Plains

    No full text
    Playas (ephemeral lakes) of the Texas High Plains (THP) appear to be aligned when observed on small scale maps or aerial photographs. Playa orientation, however, has eluded spatial description and the landscape topography relationships are unknown. This study examined the relationship between landscape aspect and playa alignment for 23 THP counties. Landscape topography was evaluated using aspect direction as determined from 100 ft (~33m) contours presented on U. S. Geological Survey 1:250,000 topographic quadrangle maps. Playa alignment was evaluated with the Hough transform using a Linear Evaluation of Actual Points Program (LEAPP). Playa alignment from LEAPP correlated with landscape aspect from USGS map contours with a correlation coefficient of 0.17. Playas were aligned with aspect direction by quadrant for 13 of the 23 THP counties evaluated. For those 13 counties, the average aspect was 112 degrees for the contour method compared to 117 degrees for the LEAPP method indicating a relationship between landscape aspect and playa alignment

    Black Women’s Confidence in the Genetic Information Nondiscrimination Act

    No full text
    Black women at-risk for hereditary breast and ovarian cancer (HBOC) continue to underutilize genetic counseling and testing (GCT). One reason for this disparity is a fear of discrimination from insurance companies if identified as high-risk. The Genetic Information Nondiscrimination Act (GINA) was enacted to protect against this type of discrimination; however, Black women’s levels of confidence in this law are unknown. In this descriptive study, we sought to (1) assess Black women’s confidence in the GINA law and (2) identify multilevel factors related to their confidence in GINA. Ninety-four Black women at-risk of HBOC completed surveys that assessed intrapersonal, interpersonal, and structural factors. Multiple regression analysis determined factors associated with confidence in GINA. Most women were ≤50 years of age (66.0%) and about half never had a cancer diagnosis (51.1%). Confidence in GINA was moderate (mean = 10.67; standard deviation = 2.54; range = 5–15). Women who valued GCT reported more confidence in GINA (β = 0.345; CI 0.017 to 0.673; p = 0.040). Lack of confidence in GINA may serve as a barrier to seeking GCT. Efforts to increase the perceived value of GCT among Black women could be benefited by increasing awareness of national efforts towards privacy protections of genetic information
    corecore