474 research outputs found

    Heating of ions by low-frequency Alfv\'{e}n waves in partially ionized plasmas

    Full text link
    In the solar atmosphere, the chromospheric and coronal plasmas are much hotter than the visible photosphere. The heating of the solar atmosphere, including the partially ionized chromosphere and corona, remains largely unknown. In this paper we demonstrate that the ions can be substantially heated by Alfv\'{e}n waves with very low frequencies in partially ionized low beta plasmas. This differs from other Alfv\'{e}n wave related heating mechanisms such as ion-neutral collisional damping of Alfv\'{e}n waves and heating described by previous work on resonant Alfv\'{e}n wave heating. In this paper, we find that the non-resonant Alfv\'{e}n wave heating is less efficient in partially ionized plasmas than when there are no ion-neutral collisions, and the heating efficiency depends on the ratio of the ion-neutral collision frequency to the ion gyrofrequency.Comment: Published as Letter

    On the multi-threaded nature of solar spicules

    Get PDF
    A dominant constituent in the dynamic chromosphere are spicules. Spicules at the limb appear as relatively small and dynamic jets that are observed to everywhere stick out. Many papers emphasize the important role spicules might play in the energy and mass balance of the chromosphere and corona. However, many aspects of spicules remain a mystery. In this Letter we shed more light on the multi-threaded nature of spicules and their torsional component. We use high spatial, spectral and temporal resolution observations from the Swedish 1-m Solar Telescope in the H{\alpha} spectral line. The data targets the limb and we extract spectra from spicules far out from the limb to reduce the line-of-sight superposition effect. We discover that many spicules display very asymmetric spectra with some even showing multiple peaks. To quantify this asymmetry we use a double Gaussian fitting procedure and find an average velocity difference between the single Gaussian components to be between 20-30 km s1^{-1} for a sample of 57 spicules. We observe that spicules show significant sub-structure where one spicule consists of many 'threads'. We interpret the asymmetric spectra as line-of-sight superposition of threads in one spicule and therefore have a measure for a perpendicular flow inside spicules which will be important for future numerical model to reproduce. In addition we show examples of {\lambda}-x-slices perpendicular across spicules and find spectral tilts in individual threads providing further evidence for the complex dynamical nature of spicules.Comment: Accepted by APJ Letter

    Observational Signatures of Simulated Reconnection Events in the Solar Chromosphere and Transition Region

    Full text link
    We present the results of numerical simulations of wave-induced magnetic reconnection in a model of the solar atmosphere. In the magnetic field geometry we study in this article, the waves, driven by a monochromatic piston and a driver taken from Hinode observations, induce periodic reconnection of the magnetic field, and this reconnection appears to help drive long-period chromospheric jets. By synthesizing observations for a variety of wavelengths that are sensitive to a wide range of temperatures, we shed light on the often confusing relationship between the plethora of jet-like phenomena in the solar atmosphere, e.g., explosive events, spicules, blinkers, and other phenomena thought to be caused by reconnection.Comment: 13 pages, 22 figures. Submitted to The Astrophysical Journa

    Dynamic fibrils in H-alpha and C IV

    Full text link
    Aim: To study the interaction of the solar chromosphere with the transition region, in particular active-region jets in the transition region and their relation to chromospheric fibrils. Methods: We carefully align image sequences taken simultaneously in C IV with the Transition Region and Coronal Explorer and in H-alpha with the Swedish 1-m Solar Telescope. We examine the temporal evolution of "dynamic fibrils", i.e., individual short-lived active-region chromospheric jet-like features in H-alpha. Results: All dynamic fibrils appear as absorption features in H-alpha that progress from the blue to the red wing through the line, and often show recurrent behavior. Some of them, but not all, appear also as bright features in C IV which develop at or just beyond the apex of the H-alpha darkening. They tend to best resemble the H-alpha fibril at +700 mA half a minute earlier. Conclusions: Dynamic chromospheric fibrils observed in H-alpha regularly correspond to transition-region jets observed in the ultraviolet. This correspondence suggests that some plasma associated with dynamic fibrils is heated to transition-region temperatures.Comment: 8 pages, 8 figure

    The formation of IRIS diagnostics I. A quintessential model atom of Mg II and general formation properties of the Mg II h&k lines

    Full text link
    NASA's Interface Region Imaging Spectrograph (IRIS) space mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations will require forward modeling of Mg II h&k line formation from 3D radiation-MHD models. This paper is the first in a series where we undertake this forward modeling. We discuss the atomic physics pertinent to h&k line formation, present a quintessential model atom that can be used in radiative transfer computations and discuss the effect of partial redistribution (PRD) and 3D radiative transfer on the emergent line profiles. We conclude that Mg II h&k can be modeled accurately with a 4-level plus continuum Mg II model atom. Ideally radiative transfer computations should be done in 3D including PRD effects. In practice this is currently not possible. A reasonable compromise is to use 1D PRD computations to model the line profile up to and including the central emission peaks, and use 3D transfer assuming complete redistribution to model the central depression.Comment: 13 pages, 13 figures, accepted for Ap

    Heating of the magnetic chromosphere: observational constraints from Ca II 8542 spectra

    Full text link
    The heating of the Sun's chromosphere remains poorly understood. While progress has been made on understanding what drives the quiet Sun internetwork chromosphere, chromospheric heating in strong magnetic field regions continues to present a difficult challenge, mostly because of a lack of observational constraints. We use high-resolution spectropolarimetric data from the Swedish 1-m Solar Telescope to identify the location and spatio-temporal properties of heating in the magnetic chromosphere. In particular, we report the existence of raised-core spectral line profiles in the Ca II 8542 line. These profiles are characterized by the absence of an absorption line core, showing a quasi-flat profile between +/- 0.5 {\AA}, and are abundant close to magnetic bright-points and plage. Comparison with 3D MHD simulations indicates that such profiles occur when the line-of-sight goes through an "elevated temperature canopy" associated with the expansion with height of the magnetic field of flux concentrations. This temperature canopy in the simulations is caused by ohmic dissipation where there are strong magnetic field gradients. The raised-core profiles are thus indicators of locations of increased chromospheric heating. We characterize the location and temporal and spatial properties of such profiles in our observations, thus providing much stricter constraints on theoretical models of chromospheric heating mechanisms than before.Comment: Accepted for publication in ApJ
    corecore