41 research outputs found
Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles
Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins. This has previously been presumed to be a surface effect, where reduced exchange allows spins closest to the nanoparticle surface to deviate locally from collinear structures. We demonstrate that intraparticle effects can induce spin canting throughout a MNP via the Dzyaloshinskii-Moriya interaction (DMI). We study ~7.4 nm diameter, core/shell Fe3O4/MnxFe3−xO4 MNPs with a 0.5 nm Mn-ferrite shell. Mössbauer spectroscopy, x-ray absorption spectroscopy and x-ray magnetic circular dichroism are used to determine chemical structure of core and shell. Polarized small angle neutron scattering shows parallel and perpendicular magnetic correlations, suggesting multiparticle coherent spin canting in an applied field. Atomistic simulations reveal the underlying mechanism of the observed spin canting. These show that strong DMI can lead to magnetic frustration within the shell and cause canting of the net particle moment. These results illuminate how core/shell nanoparticle systems can be engineered for spin canting across the whole of the particle, rather than solely at the surface
Reaction of naphthalene-2,3-dicarboxaldehyde with enkephalins for LC-fluorescence and lc-ms analysis: Conformational studies by molecular modeling and H/D Exchange mass spectrometry
Magnetic impurities in single-walled carbon nanotubes and graphene: a review
A review on magnetic impurities in single-walled carbon nanotubes and graphene: purification and detection of impurities and impurity-induced magnetism.</p
Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy
Coexistence of Van Hove singularities and pseudomagnetic fields in modulated graphene bilayer
© 2020 IOP Publishing Ltd. The stacking and bending of graphene are trivial but extremely powerful agents of control over graphene's manifold physics. By changing the twist angle, one can drive the system over a plethora of exotic states via strong electron correlation, thanks to the moiré superlattice potentials, while the periodic or triaxial strains induce discretization of the band structure into Landau levels without the need for an external magnetic field. We fabricated a hybrid system comprising both the stacking and bending tuning knobs. We have grown the graphene monolayers by chemical vapor deposition, using 12C and 13C precursors, which enabled us to individually address the layers through Raman spectroscopy mapping. We achieved the long-range spatial modulation by sculpturing the top layer (13C) over uniform magnetic nanoparticles (NPs) deposited on the bottom layer (12C). An atomic force microscopy study revealed that the top layer tends to relax into pyramidal corrugations with C3 axial symmetry at the position of the NPs, which have been widely reported as a source of large pseudomagnetic fields (PMFs) in graphene monolayers. The modulated graphene bilayer (MGBL) also contains a few micrometer large domains, with the twist angle ∼10°, which were identified via extreme enhancement of the Raman intensity of the G-mode due to formation of van Hove singularities (VHSs). We thereby conclude that the twist-induced VHSs coexist with the PMFs generated in the strained pyramidal objects without mutual disturbance. The graphene bilayer modulated with magnetic NPs is a non-trivial hybrid system that accommodates features of twist-induced VHSs and PMFs in environs of giant classical spins
Structure and magnetic response of a residual metal catalyst in highly purified single walled carbon nanotubes
The internal structure of magnetic nanoparticles determines the magnetic response
This work aims to emphasize that the magnetic response of single-domain magnetic nanoparticles (NPs) is driven by the NPs' internal structure, and the NP size dependencies of magnetic properties are overestimated. The relationship between the degree of the NPs' crystallinity and magnetic response is unambiguously demonstrated in eight samples of uniform maghemite/magnetite NPs and corroborated with the results obtained for about 20 samples of spinel ferrite NPs with different degrees of crystallinity. The NP samples were prepared by the thermal decomposition of an organic iron precursor subjected to varying reaction conditions, yielding variations in the NP size, shape and relative crystallinity. We characterized the samples by using several complementary methods, such as powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), high resolution TEM (HR-TEM) and Mössbauer spectroscopy (MS). We evaluated the NPs' relative crystallinity by comparing the NP sizes determined from TEM and PXRD and further inspecting the NPs' internal structure and relative crystallinity by using HR-TEM. The results of the structural characterization were put in the context of the NPs' magnetic response. In this work, the highest saturation magnetization (M) was measured for the smallest but well-crystalline NPs, while the larger NPs exhibiting worse crystallinity revealed a lower M. Our results clearly demonstrate that the NP crystallinity level that is mirrored in the internal spin order drives the specific magnetic response of the single-domain NPs.This work was supported by the Czech Science Foundation (Project 15-01953S), the Spanish Ministry of Economy and Competitiveness (Project MAT2015-71806-R), the Madrid regional government (NANOFRONTMAG, S2013/MIT-2850), the Spanish government project MAGO (under Grant MAT2014-52069-R). Magnetic measurements were performed in the MLTL
Experimental methods to study clay minerals and perspective applications of Fluorohectorite
Fluorohectorite is a synthetic 2:1 layer smectite clay where the presence of exchangeable cations located between water molecules in the interlayer space allows for expansion of the crystal lattice. This swelling property is extremely relevant to many applications including water treatment, bioactive molecules intercalation (drug delivery), soil remediation, CO2capture as well as extra-terrestrial environment studies. In the present chapter, the aim is to discuss why Fluorohectorite can be in particular advantageous for many applications where retention of big volumes is an issue. We will also discuss on the main experimental techniques used to study these materials.</jats:p
