29 research outputs found

    Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles

    Get PDF
    Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins. This has previously been presumed to be a surface effect, where reduced exchange allows spins closest to the nanoparticle surface to deviate locally from collinear structures. We demonstrate that intraparticle effects can induce spin canting throughout a MNP via the Dzyaloshinskii-Moriya interaction (DMI). We study ~7.4 nm diameter, core/shell Fe3O4/MnxFe3−xO4 MNPs with a 0.5 nm Mn-ferrite shell. Mössbauer spectroscopy, x-ray absorption spectroscopy and x-ray magnetic circular dichroism are used to determine chemical structure of core and shell. Polarized small angle neutron scattering shows parallel and perpendicular magnetic correlations, suggesting multiparticle coherent spin canting in an applied field. Atomistic simulations reveal the underlying mechanism of the observed spin canting. These show that strong DMI can lead to magnetic frustration within the shell and cause canting of the net particle moment. These results illuminate how core/shell nanoparticle systems can be engineered for spin canting across the whole of the particle, rather than solely at the surface

    Coexistence of Van Hove singularities and pseudomagnetic fields in modulated graphene bilayer

    No full text
    © 2020 IOP Publishing Ltd. The stacking and bending of graphene are trivial but extremely powerful agents of control over graphene's manifold physics. By changing the twist angle, one can drive the system over a plethora of exotic states via strong electron correlation, thanks to the moiré superlattice potentials, while the periodic or triaxial strains induce discretization of the band structure into Landau levels without the need for an external magnetic field. We fabricated a hybrid system comprising both the stacking and bending tuning knobs. We have grown the graphene monolayers by chemical vapor deposition, using 12C and 13C precursors, which enabled us to individually address the layers through Raman spectroscopy mapping. We achieved the long-range spatial modulation by sculpturing the top layer (13C) over uniform magnetic nanoparticles (NPs) deposited on the bottom layer (12C). An atomic force microscopy study revealed that the top layer tends to relax into pyramidal corrugations with C3 axial symmetry at the position of the NPs, which have been widely reported as a source of large pseudomagnetic fields (PMFs) in graphene monolayers. The modulated graphene bilayer (MGBL) also contains a few micrometer large domains, with the twist angle ∼10°, which were identified via extreme enhancement of the Raman intensity of the G-mode due to formation of van Hove singularities (VHSs). We thereby conclude that the twist-induced VHSs coexist with the PMFs generated in the strained pyramidal objects without mutual disturbance. The graphene bilayer modulated with magnetic NPs is a non-trivial hybrid system that accommodates features of twist-induced VHSs and PMFs in environs of giant classical spins

    Correlation of unified retention indices for OV-101 and squalane

    No full text
    corecore