128 research outputs found
The synthesis: Structure relationship in the ZnO-Cr2O3 system
In this work the development of the spinel phase in the ZnO-Cr2O3 system was discussed from the viewpoint of the synthesis-structure relationship. The nanostructure evolution in particles obtained either via solution-based (spray pyrolysis) or solid-state (mechanical activation) synthesis procedures were investigated by XRD analysis. A detailed structural analysis of the spinel phase lattice parameters, average primary crystallite sizes and micro strains were performed in accordance with a procedure based on the Koalariet-Xfit program. Due to the importance of spinel-phase cat ion distribution for chemical and physical properties, a study of the site occupation factors, i.e. changes in the stoichiometric, of ZnCr2O4 spinals was undertaken. The calculation based on atomistic methods for the description of both perfect and defect spinel ZnCr2O4 crystal lattices has been applied and the presence of individual structural defects was determined
The influence of the UV irradiation intensity on photocatalytic activity of ZnAl layered double hydroxides and derived mixed oxides
Layered double hydroxides (LDHs) have been studied to a great extent as environmental-friendly complex materials that can be used as photocatalysts or photocatalyst supports. ZnAl layered double hydroxides and their derived mixed oxides were chosen for the investigation of photocatalytic performances in correlation with the UV intensities measured in the South Pannonia region. Low supersaturation coprecipitation method was used for the ZnAl LDH synthesis. For the characterization of LDH and thermal treated samples powder X-ray diffraction (XRD), scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), nitrogen adsorption-desorption were used. The decomposition of azodye, methylene blue was chosen as photocatalytic test reaction. The study showed that the ZnAl mixed oxide obtained by thermal decomposition of ZnAl LDH has stable activity in the broader UV light irradiation range characterizing the selected region. Photocatalytic activity could be mainly attributed to the ZnO phase, detected both in LDH and thermally treated samples. The study showed that the ZnAl mixed oxide obtained by the calcination of ZnAl LDH has a stable activity within the measured UV light irradiation range; whereas the parent ZnAl LDH catalyst did not perform satisfactory when low UV irradiation intensity is implied
Elastic scattering of electrons from alanine
Differential cross sections (DCSs) for elastic scattering of electrons from alanine, have been measured using a crossed beam system for incident energies between 20 and 80 eV and scattering angles from 10° to 150°. The experimental data were placed upon an absolute scale by normalisation to calculated absolute integral cross sections obtained using the corrected independent-atom method incorporating an improved quasifree absorption model. The calculated data-set includes DCSs and integral elastic and inelastic cross sections in the incident energy range between 1 and 10,000 eV. These theoretical results are found to agree very well with the experimental data both in the shape and magnitude of DCSs except at the smallest scattering angles
Functionalization of graphene nanoplatelets via Bingel reaction for polymer nanocomposites
In this study, we have performed functionalization of graphene nanoplatelets (GNPs) via Bingel reaction and investigated influence on the addition of covalently functionalized GPNs on the structural changes of the poly(methyl methacrylate). Preparation of poly(methyl methacrylate) nanocomposites with functionalized GNPs has been accomplished by drop casting method of dissolved PMMA mixed with modified graphene nanoplatelets dispersed in a N-methyl-1-pyrrolidone. Functionalizaton of graphene has been achieved under the conditions of Bingel reaction, which implies introduction of diethyl malonate on the graphene surfaces through the cyclopropane ring formation. Introduction of the cyclopropane ring on to the surface of graphene does not significantly affect the initial structural properties of graphene nanoplatelets, allowing better dispersible properties due to interaction of covalently attached diethyl malonate groups with the polymer chains. Fourier transform infrared spectroscopy (FTIR) and elemental analysis confirmed the effectiveness of the addition of diethyl malonate via Bingel reaction on the surface of GNPs. Scanning electron microscopy (SEM) has been used to provide information on the morphology of functionalized GNPs. Prepared nanocomposites have been characterized by Raman and FTIR spectroscopy. The changes regarding glass transition temperature have been monitored with differential scanning calorimetry (DSC)
Study of electron transmission through a metallic capillary
In this work we study the transmission of charged particles through a single cylindrically shaped metallic capillary of microscopic dimensions with a large aspect ratio. We used electrons as projectiles. Our results suggest the existence of guiding of the electron beam by a metallic capillary.29th International Conference on Photonic, Electronic, and Atomic Collisions (ICPEAC), Jul 22-28, 2015, Toledo, Spai
Supplementary material for the article: Rusmirović, J.D., Obradović, N., Perendija, J., Umićević, A., Kapidžić, A., Vlahović, B., Pavlović, V., Marinković, A.D., Pavlović, V.B., 2019. Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. Environ Sci Pollut Res 26, 12379–12398. https://doi.org/10.1007/s11356-019-04625-0
Related to: [http://dais.sanu.ac.rs/handle/123456789/5764]Supplementary material for: [http://dx.doi.org/10.1007/s11356-019-04625-0
Dioksini i njihova toksičnost za ljude
The term dioxins usually refers to polychlorinated dibenzo-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). As 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) has the highest toxic potential, the toxic potentials of other PCDDs and PCDFs are defined in comparison with it. Human exposure to dioxins can be environmental (background), occupational, or accidental pollution. In the human body, dioxins are in part metabolised and eliminated, and the rest is stored in body fat. People vary in their capacity to eliminate TCDD, but it is also dose-dependent; the elimination rate is much faster at higher than lower levels. The liver microsomal P4501A1 enzyme oxygenates lipophilic chemicals such as dioxins. It is encoded by the CYP1A1 gene. Cytosolic aryl hydrocarbon receptor (AhR) mediates their carcinogenic action. It binds to dioxin, translocates to nucleus and together with hydrocarbon nuclear translocator (ARNT) and xenobiotic responsive element (XRE) increases the expression of CYP1A1. Dioxins are classified as known human carcinogens, but they also cause noncancerous effects like atherosclerosis, hypertension, and diabetes. Long-term exposures to dioxins cause disruption of the nervous, immune, reproductive, and endocrine system. Short-term exposure to high levels impairs the liver function and causes chloracne. The most sensitive population to dioxin exposure are the foetuses and infants. A large number of health effects have been documented in the scientific literature, and they all place dioxins among the most toxic chemicals known to man.Dioksini su skupina kemijskih spojeva koji obuhvaćaju poliklorirane dibenzo-dioksine (PCDD) i poliklorirane dibenzo-furane (PCDF). Najveći toksični potencijal (faktor ekvivalentne toksičnosti) ima
2,3,7,8-TCDD, dok su toksični potencijali drugih PCDD i PCDF određeni u odnosu na njega. Izloženost dioksinima može biti izravna: izloženost dioksinima emitiranim u okoliš kao posljedica nesreće,
profesionalna izloženost te neizravna, tzv. pozadinska. Nakon ulaska u ljudski organizam dioksini se djelomično metaboliziraju i eliminiraju, a ostatak se pohranjuje u adipozno tkivo. Postoji određena varijabilnost između ljudi u kapacitetu eliminacije TCDD. Eliminacija TCDD ovisna je o dozi – kod veće izloženosti (izloženost višim koncentracijama) brzina eliminacije je viša nego kod manje izloženosti (izloženost nižim koncentracijama). Enzim P4501A1 najvažniji je u oksigenaciji lipofi lnih supstrata poput dioksina. Kodiran je genom CYP1A1.
AhR je stanični receptor koji djeluje kao transkripcijski faktor koji posreduje u njihovu karcinogenom učinku. AhR veže dioksin te se premješta u jezgru gdje zajedno s ARNT (engl. aryl hydrocarbon nuclear translocator) i XRE (engl. xenobiotic responsive element), smještenim u promotorskoj regiji gena za CYP1A1, uzrokuje povećani izražaj CYP1A1.
Dioksini su karcinogeni spojevi, ali imaju i nekarcinogene učinke poput ateroskleroze, hipertenzije, dijabetesa, poremećaj živčanog, imunosnog, reproduktivnog i endokrinog sustava, posebice kod kronične izloženosti. Akutna izloženost uzrokuje oštećenja jetre i klorakne. Najosjetljivija skupina izloženosti dioksinu je dojenčad u prenatalnom i postnatalnom razdoblju. U znanstvenoj i stručnoj literaturi dokumentirani su brojni zdravstveni učinci kao posljedice izloženosti dioksinima te ih svi ističu kao jedne od najtoksičnijih kemijskih spojeva
Recommended Cross Sections for Electron-Indium Scattering
20 pags., 7 figs., 6 tabs.We report, over an extended energy range, recommended angle-integrated cross sections for elastic scattering, discrete inelastic scattering processes, and the total ionization cross section for electron scattering from atomic indium. In addition, from those angle-integrated cross sections, a grand total cross section is subsequently derived. To construct those recommended cross-section databases, results from original B-spline R-matrix, relativistic convergent close-coupling, and relativistic optical-potential computations are also presented here. Electron transport coefficients are subsequently calculated, using our recommended database, for reduced electric fields ranging from 0.01 Td to 10 000 Td using a multiterm solution of Boltzmann's equation. To facilitate those simulations, a recommended elastic momentum transfer cross-section set is also constructed and presented here.The work of K.R.H., O.Z., and K.B. was supported by the United
States National Science Foundation under Grant Nos. OAC-1834740
and PHY-1803844 and by the XSEDE supercomputer Allocation
No. PHY-090031. The (D)BSR calculations were carried out on
Stampede2 at the Texas Advanced Computing Center. The work of
D.V.F. and I.B. was supported by the Australian Research Council and
resources provided by the Pawsey Supercomputing Centre with
funding from the Australian Government and the Government of
Western Australia. F.B. and G.G. acknowledge partial financial
support from the Spanish Ministry MICIU (Project Nos. FIS2016-
80440 and PID2019-104727-RB-C21) and CSIC (Project No.
LINKA20085). This work was also financially supported, in part, by
the Australian Research Council (Project No. DP180101655), the
Ministry of Education, Science and Technological Development of
the Republic of Serbia, and the Institute of Physics (Belgrade).Peer reviewe
- …