24,098 research outputs found
Operator Inference for Non-Intrusive Model Reduction of Systems with Non-Polynomial Nonlinear Terms
Anderson transitions in three-dimensional disordered systems with randomly varying magnetic flux
The Anderson transition in three dimensions in a randomly varying magnetic
flux is investigated in detail by means of the transfer matrix method with high
accuracy. Both, systems with and without an additional random scalar potential
are considered. We find a critical exponent of with random
scalar potential. Without it, is smaller but increases with the system
size and extrapolates within the error bars to a value close to the above. The
present results support the conventional classification of universality classes
due to symmetry.Comment: 4 pages, 2 figures, to appear in Phys. Rev.
Long-term Observations of Three Nulling Pulsars
We present an analysis of approximately 200 hours of observations of the
pulsars J16345107, J17174054 and J18530505, taken over the course of
14.7 yr. We show that all of these objects exhibit long term nulls and
radio-emitting phases (i.e. minutes to many hours), as well as considerable
nulling fractions (NFs) in the range . PSR J17174054 is
also found to exhibit short timescale nulls () and burst phases
() during its radio-emitting phases. This behaviour acts to
modulate the NF, and therefore the detection rate of the source, over
timescales of minutes. Furthermore, PSR J18530505 is shown to exhibit a weak
emission state, in addition to its strong and null states, after sufficient
pulse integration. This further indicates that nulls may often only represent
transitions to weaker emission states which are below the sensitivity
thresholds of particular observing systems. In addition, we detected a
peak-to-peak variation of in the spin-down rate of PSR
J17174054, over timescales of hundreds of days. However, no long-term
correlation with emission variation was found.Comment: 10 pages, 8 figures, accepted for publication in MNRA
Exponential localization in one-dimensional quasiperiodic optical lattices
We investigate the localization properties of a one-dimensional bichromatic
optical lattice in the tight binding regime, by discussing how exponentially
localized states emerge upon changing the degree of commensurability. We also
review the mapping onto the discrete Aubry-Andre' model, and provide evidences
on how the momentum distribution gets modified in the crossover from extended
to exponentially localized states. This analysis is relevant to the recent
experiment on Anderson localization of a noninteracting Bose-Einstein
condensate in a quasiperiodic optical lattice [G. Roati et al., Nature 453, 895
(2008)].Comment: 13 pages, 6 figure
On the Apparent Nulls and Extreme Variability of PSR J1107-5907
We present an analysis of the emission behaviour of PSR J1107-5907, a source
known to exhibit separate modes of emission, using observations obtained over
approximately 10 yr. We find that the object exhibits two distinct modes of
emission; a strong mode with a broad profile and a weak mode with a narrow
profile. During the strong mode of emission, the pulsar typically radiates very
energetic emission over sequences of ~200-6000 pulses (~60 s-24 min), with
apparent nulls over time-scales of up to a few pulses at a time. Emission
during the weak mode is observed outside of these strong-mode sequences and
manifests as occasional bursts of up to a few clearly detectable pulses at a
time, as well as low-level underlying emission which is only detected through
profile integration. This implies that the previously described null mode may
in fact be representative of the bottom-end of the pulse intensity distribution
for the source. This is supported by the dramatic pulse-to-pulse intensity
modulation and rarity of exceptionally bright pulses observed during both modes
of emission. Coupled with the fact that the source could be interpreted as a
rotating radio transient (RRAT)-like object for the vast majority of the time,
if placed at a further distance, we advance that this object likely represents
a bridge between RRATs and extreme moding pulsars. Further to these emission
properties, we also show that the source is consistent with being a
near-aligned rotator and that it does not exhibit any measurable spin-down rate
variation. These results suggest that nulls observed in other intermittent
objects may in fact be representative of very weak emission without the need
for complete cessation. As such, we argue that longer (> 1 h) observations of
pulsars are required to discern their true modulation properties.Comment: 15 pages, 10 figures, accepted for publication in MNRA
Long-term Radio Observations of the Intermittent Pulsar B1931+24
We present an analysis of approximately 13-yr of observations of the
intermittent pulsar B1931+24 to further elucidate its behaviour. We find that
while the source exhibits a wide range of nulling (~4-39 d) and radio-emitting
(~1-19 d) timescales, it cycles between its different emission phases over an
average timescale of approximately 38 d, which is remarkably stable over many
years. On average, the neutron star is found to be radio emitting for 26 +- 6 %
of the time. No evidence is obtained to suggest that the pulsar undergoes any
systematic, intrinsic variations in pulse intensity during the radio-emitting
phases. In addition, we find no evidence for any correlation between the length
of consecutive emission phases. An analysis of the rotational behaviour of the
source shows that it consistently assumes the same spin-down rates, i.e. nudot
= -16 +- 1 x 10^-15 s^-2 when emitting and nudot = -10.8 +- 0.4 x 10^-15 s^-2
when not emitting, over the entire observation span. Coupled with the stable
switching timescale, this implies that the pulsar retains a high degree of
magnetospheric memory, and stability, in spite of comparatively rapid (~ms)
dynamical plasma timescales. While this provides further evidence to suggest
that the behaviour of the neutron star is governed by magnetospheric-state
switching, the underlying trigger mechanism remains illusive. This should be
elucidated by future surveys with next generation telescopes such as LOFAR,
MeerKAT and the SKA, which should detect similar sources and provide more clues
to how their radio emission is regulated.Comment: 12 pages, 12 figures, accepted for publication in MNRA
Necessary and sufficient condition for hydrostatic equilibrium in general relativity
We present explicit examples to show that the `compatibility criterion' is
capable of providing a {\em necessary} and {\em sufficient} condition for any
regular configuration to be compatible with the state of hydrostatic
equilibrium. This conclusion is drawn on the basis of the finding that the
relation gives the necessary and sufficient condition for dynamical
stability of equilibrium configurations only when the compatibility criterion
for these configurations is appropriately satisfied. In this regard, we
construct an appropriate sequence composed of core-envelope models on the basis
of compatibility criterion, such that each member of this sequence satisfies
the extreme case of causality condition at the centre. The maximum
stable value of (which occurs for the model corresponding to
the maximum value of mass in the mass-radius relation) and the corresponding
central value of the local adiabatic index, , of
this model are found fully consistent with those of the corresponding {\em
absolute} values, , and ,
which impose strong constraints on these parameters of such models. In addition
to this example, we also study dynamical stability of pure adiabatic polytropic
configurations on the basis of variational method for the choice of the `trial
function', , as well as the mass-central density relation,
since the compatibility criterion is appropriately satisfied for these models.
The results of this example provide additional proof in favour of the statement
regarding compatibility criterion mentioned above.Comment: 31 pages (double-spaced) revtex style, 1 figure in `ps' forma
Solution generating with perfect fluids
We apply a technique, due to Stephani, for generating solutions of the
Einstein-perfect fluid equations. This technique is similar to the vacuum
solution generating techniques of Ehlers, Harrison, Geroch and others. We start
with a ``seed'' solution of the Einstein-perfect fluid equations with a Killing
vector. The seed solution must either have (i) a spacelike Killing vector and
equation of state P=rho or (ii) a timelike Killing vector and equation of state
rho+3P=0. The new solution generated by this technique then has the same
Killing vector and the same equation of state. We choose several simple seed
solutions with these equations of state and where the Killing vector has no
twist. The new solutions are twisting versions of the seed solutions
Incompressible strips in dissipative Hall bars as origin of quantized Hall plateaus
We study the current and charge distribution in a two dimensional electron
system, under the conditions of the integer quantized Hall effect, on the basis
of a quasi-local transport model, that includes non-linear screening effects on
the conductivity via the self-consistently calculated density profile. The
existence of ``incompressible strips'' with integer Landau level filling factor
is investigated within a Hartree-type approximation, and non-local effects on
the conductivity along those strips are simulated by a suitable averaging
procedure. This allows us to calculate the Hall and the longitudinal resistance
as continuous functions of the magnetic field B, with plateaus of finite widths
and the well-known, exactly quantized values. We emphasize the close relation
between these plateaus and the existence of incompressible strips, and we show
that for B values within these plateaus the potential variation across the Hall
bar is very different from that for B values between adjacent plateaus, in
agreement with recent experiments.Comment: 13 pages, 11 figures, All color onlin
Negative differential conductance in quantum dots in theory and experiment
Experimental results for sequential transport through a lateral quantum dot
in the regime of spin blockade induced by spin dependent tunneling are compared
with theoretical results obtained by solving a master equation for independent
electrons. Orbital and spin effects in electron tunneling in the presence of a
perpendicular magnetic field are identified and discussed in terms of the
Fock-Darwin spectrum with spin. In the nonlinear regime, a regular pattern of
negative differential conductances is observed. Electrical asymmetries in
tunnel rates and capacitances must be introduced in order to account for the
experimental findings. Fast relaxation of the excited states in the quantum dot
have to be assumed, in order to explain the absence of certain structures in
the transport spectra.Comment: 4 pages, 4 figure
- …
