1,008 research outputs found
The generalized identification of truly interfacial molecules (ITIM) algorithm for nonplanar interfaces
We present a generalized version of the ITIM algorithm for the identification of interfacial molecules, which is able to treat arbitrarily shaped interfaces. The algorithm exploits the similarities between the concept of probe sphere used in ITIM and the circumsphere criterion used in the α-shapes approach, and can be regarded either as a reference-frame independent version of the former, or as an extended version of the latter that includes the atomic excluded volume. The new algorithm is applied to compute the intrinsic orientational order parameters of water around a dodecylphosphocholine and a cholic acid micelle in aqueous environment, and to the identification of solvent-reachable sites in four model structures for soot. The additional algorithm introduced for the calculation of intrinsic density profiles in arbitrary geometries proved to be extremely useful also for planar interfaces, as it allows to solve the paradox of smeared intrinsic profiles far from the interface. © 2013 American Institute of Physics
Transport on randomly evolving trees
The time process of transport on randomly evolving trees is investigated. By
introducing the notions of living and dead nodes a model of random tree
evolution is constructed which describes the spreading in time of objects
corresponding to nodes. By using the method of the age-dependent branching
processes we derive the joint distribution function of the number of living and
dead nodes, and determine the correlation between these node numbers as a
function of time. Also analyzed are the stochastic properties of the end-nodes;
and the correlation between the numbers of living and dead end-nodes is shown
to change its character suddenly at the very beginning of the evolution
process. The survival probability of random trees is investigated and
expressions are derived for this probability.Comment: 16 pages, 8 figures, published in Phys. Rev. E 72, 051101 (2005
A dohányzás és az anyagi helyzet összefüggése serdülőkori és felnőttkori terhesség esetén
INTRODUCTION: Smoking occurs frequently during pregnancy, thereby putting mother and child at health risks. Low socio-economic status is a risk factor for smoking. AIM: To investigate the relationship between smoking and low income in teenage and adult pregnancy, which is an important measure of poor socioeconomic status. METHOD: The authors used subject-level data from the US NSDUH database, which contains information on pregnancies and smoking. RESULTS: Teenage pregnancy is associated with higher, whereas adult pregnancy with lower prevalence of smoking, compared to the age-matched female population. The association between income and smoking is age-dependent. Among adults there is an inverse relationship (high income -- low-risk of smoking), while in teenage pregnancy smoking increases with income. CONCLUSIONS: To investigate in teenage and adult pregnancy the relationship between smoking and low income, which is an important measure of poor socio-economic status. Higher socioeconomic status may be associated with risky behaviour, thereby increasing both the risk of smoking and early pregnancy
Uniqueness of the electrostatic solution in Schwarzschild space
In this Brief Report we give the proof that the solution of any static test
charge distribution in Schwarzschild space is unique. In order to give the
proof we derive the first Green's identity written with p-forms on (pseudo)
Riemannian manifolds. Moreover, the proof of uniqueness can be shown for either
any purely electric or purely magnetic field configuration. The spacetime
geometry is not crucial for the proof.Comment: 3 pages, no figures, uses revtex4 style file
The randomly driven Ising ferromagnet, Part II: One and two dimensions
We consider the behavior of an Ising ferromagnet obeying the Glauber dynamics
under the influence of a fast switching, random external field. In Part I, we
introduced a general formalism for describing such systems and presented the
mean field theory. In this article we derive results for the one dimensional
case, which can be only partially solved. Monte Carlo simulations performed on
a square lattice indicate that the main features of the mean field theory
survive the presence of strong fluctuations.Comment: 10 pages in REVTeX/LaTeX format, 17 eps/ps figures. Submitted to
Journal of Physics
The contact binary VW Cephei revisited: surface activity and period variation
Context. Despite the fact that VW Cephei is one of the well-studied contact
binaries in the literature, there is no fully consistent model available that
can explain every observed property of this system.
Aims. Our motivation is to obtain new spectra along with photometric
measurements, to analyze what kind of changes may have happened in the system
in the past two decades, and to propose new ideas for explaining them.
Methods. For the period analysis we determined 10 new times of minima from
our light curves, and constructed a new OC diagram of the system. Radial
velocities of the components were determined using the cross-correlation
technique. The light curves and radial velocities were modelled simultaneously
with the PHOEBE code. All observed spectra were compared to synthetic spectra
and equivalent widths of the H line were measured on their differences.
Results. We have re-determined the physical parameters of the system
according to our new light curve and spectral models. We confirm that the
primary component is more active than the secondary, and there is a correlation
between spottedness and the chromospheric activity. We propose that flip-flop
phenomenon occurring on the primary component could be a possible explanation
of the observed nature of the activity. To explain the period variation of VW
Cep, we test two previously suggested scenarios: presence of a fourth body in
the system, and the Applegate-mechanism caused by periodic magnetic activity.
We conclude that although none of these mechanisms can be ruled out entirely,
the available data suggest that mass transfer with a slowly decreasing rate
gives the most likely explanation for the period variation of VW Cep.Comment: 13 pages, 18 figures, 9 tables, accepted for publication in Astronomy
and Astrophysic
Maximal violation of the I3322 inequality using infinite dimensional quantum systems
The I3322 inequality is the simplest bipartite two-outcome Bell inequality
beyond the Clauser-Horne-Shimony-Holt (CHSH) inequality, consisting of three
two-outcome measurements per party. In case of the CHSH inequality the maximal
quantum violation can already be attained with local two-dimensional quantum
systems, however, there is no such evidence for the I3322 inequality. In this
paper a family of measurement operators and states is given which enables us to
attain the largest possible quantum value in an infinite dimensional Hilbert
space. Further, it is conjectured that our construction is optimal in the sense
that measuring finite dimensional quantum systems is not enough to achieve the
true quantum maximum. We also describe an efficient iterative algorithm for
computing quantum maximum of an arbitrary two-outcome Bell inequality in any
given Hilbert space dimension. This algorithm played a key role to obtain our
results for the I3322 inequality, and we also applied it to improve on our
previous results concerning the maximum quantum violation of several bipartite
two-outcome Bell inequalities with up to five settings per party.Comment: 9 pages, 3 figures, 1 tabl
Antitumor effect of lysine-isopeptides
Isopeptides (ε-peptides) of lysine, with a given Mw and low polydispersity (10–400 units), were synthesized to study the relationship between their chemical structure and biological effect. The designed compounds were of high purity, low polydispersity and high stereochemical purity. The effect of the compounds was tested on a human erythroleukemia cell line (K-562) and on four transplantable mouse tumors (L1210 lymphoid leukemia, P38 macrophage derived tumor, Ehrlich ascites carcinoma, Lewis lung tumor /LLT/). In case of the L1210 and P388 tumors and the Ehrlich carcinoma, survival of the animals was used as an indicator of the effect. In case of the Lewis lung tumor, the number and size of metastases in the lung and/or liver of treated and untreated mice were used as indicators. The polymers of polymerisation degree 80–120 (Mw 10.2–15.4 KD) showed the strongest antiproliferative effect both on K562 cells and the tumors growing in vivo. This effect was manifest with a significantly higher survival rate as compared to the control (L1210, P38, Ehrlich ascites), furthermore, by a decrease in the number and size of liver and lung metastases (LLT)
Main-Belt Asteroids in the K2 Engineering Field of View
Unlike NASA's original Kepler Discovery Mission, the renewed K2 Mission will
stare at the plane of the Ecliptic, observing each field for approximately 75
days. This will bring new opportunities and challenges, in particular the
presence of a large number of main-belt asteroids that will contaminate the
photometry. The large pixel size makes K2 data susceptible to the effect of
apparent minor planet encounters. Here we investigate the effects of asteroid
encounters on photometric precision using a sub-sample of the K2 Engineering
data taken in February, 2014. We show examples of asteroid contamination to
facilitate their recognition and distinguish these events from other error
sources. We conclude that main-belt asteroids will have considerable effects on
K2 photometry of a large number of photometric targets during the Mission, that
will have to be taken into account. These results will be readily applicable
for future space photometric missions applying large-format CCDs, such as TESS
and PLATO.Comment: accepted for publication in AJ, 6 page
- …
