206 research outputs found

    Motor units as tools to evaluate profile of human Renshaw inhibition

    Get PDF
    Although Renshaw inhibition (RI) has been extensively studied for decades, its precise role in motor control is yet to be discovered. One of the main handicaps is a lack of reliable methods for studying RI in conscious human subjects. We stimulated the lowest electrical threshold motor axons (thickest axons) in the tibial nerve and analysed the stimulus‐correlated changes in discharge of voluntarily recruited low‐threshold single motor units (SMUs) from the soleus muscle. In total, 54 distinct SMUs from 12 subjects were analysed. Stimuli that generated only the direct motor response (M‐only) on surface electromyography induced an inhibitory response in the low‐threshold SMUs. Because the properties of RI had to be estimated indirectly using the background discharge rate of SMUs, its profile varied with the discharge rate of the SMU. The duration of RI was found to be inversely proportional to the discharge rate of SMUs. Using this important finding, we have developed a method of extrapolation for estimating RI as it develops on motoneurons in the spinal cord. The frequency methods indicated that the duration of RI was between 30 and 40 ms depending on the background firing rate of the units, and the extrapolation indicated that RI on silent motoneurons was ∌55 ms. The present study establishes a novel methodology for studying RI in human subjects and hence may serve as a tool for improving our understanding of the involvement of RI in human motor control

    Derived Data Storage and Exchange Workflow for Large-Scale Neuroimaging Analyses on the BIRN Grid

    Get PDF
    Organizing and annotating biomedical data in structured ways has gained much interest and focus in the last 30 years. Driven by decreases in digital storage costs and advances in genetics sequencing, imaging, electronic data collection, and microarray technologies, data is being collected at an ever increasing rate. The need to store and exchange data in meaningful ways in support of data analysis, hypothesis testing and future collaborative use is pervasive. Because trans-disciplinary projects rely on effective use of data from many domains, there is a genuine interest in informatics community on how best to store and combine this data while maintaining a high level of data quality and documentation. The difficulties in sharing and combining raw data become amplified after post-processing and/or data analysis in which the new dataset of interest is a function of the original data and may have been collected by multiple collaborating sites. Simple meta-data, documenting which subject and version of data were used for a particular analysis, becomes complicated by the heterogeneity of the collecting sites yet is critically important to the interpretation and reuse of derived results. This manuscript will present a case study of using the XML-Based Clinical Experiment Data Exchange (XCEDE) schema and the Human Imaging Database (HID) in the Biomedical Informatics Research Network's (BIRN) distributed environment to document and exchange derived data. The discussion includes an overview of the data structures used in both the XML and the database representations, insight into the design considerations, and the extensibility of the design to support additional analysis streams

    Exploring the receptor origin of vibration-induced reflexes

    Get PDF
    STUDY DESIGN: An experimental design. OBJECTIVES: The aim of this study was to determine the latencies of vibration-induced reflexes in individuals with and without spinal cord injury (SCI), and to compare these latencies to identify differences in reflex circuitries. SETTING: A tertiary rehabilitation center in Istanbul. METHODS: Seventeen individuals with chronic SCI (SCI group) and 23 participants without SCI (Control group) were included in this study. Latency of tonic vibration reflex (TVR) and whole-body vibration-induced muscular reflex (WBV-IMR) of the left soleus muscle was tested for estimating the reflex origins. The local tendon vibration was applied at six different vibration frequencies (50, 85, 140, 185, 235, and 265 Hz), each lasting for 15 s with 3-s rest intervals. The WBV was applied at six different vibration frequencies (35, 37, 39, 41, 43, and 45 Hz), each lasting for 15 s with 3-s rest intervals. RESULTS: Mean (SD) TVR latency was 39.7 (5.3) ms in the SCI group and 35.9 (2.7) ms in the Control group with a mean (95% CI) difference of -3.8 (-6.7 to -0.9) ms. Mean (SD) WBV-IMR latency was 45.8 (7.4) ms in the SCI group and 43.3 (3.0) ms in the Control group with a mean (95% CI) difference of -2.5 (-6.5 to 1.4) ms. There were significant differences between TVR latency and WBV-IMR latency in both the groups (mean (95% CI) difference; -6.2 (-9.3 to -3.0) ms, p = 0.0001 for the SCI group and -7.4 (-9.3 to -5.6) ms, p = 0.011 for Control group). CONCLUSIONS: The results suggest that the receptor of origin of TVR and WBV-IMR may be different

    The Function Biomedical Informatics Research Network Data Repository

    Get PDF
    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical datasets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 dataset consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 Tesla scanners. The FBIRN Phase 2 and Phase 3 datasets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN’s multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data

    The origin of the fluids circulating over the Amik Basin (Turkey) and their relationships with the Dead Sea Fault

    Get PDF
    The Amik Basin is an asymmetrical composite transtensional basin developed between the seismically active left-lateral Dead Sea Fault (DSF) splays and the left-lateral oblique-slip Karasu Fault segment during neotectonic period. The relationship between the DSF and the East Anatolian Fault Zone is important as it represents a triple junction between Arabian Plate, African Plate and Anatolian Block in which the Amik Basin developed. The basin was formed on a pre-Miocene basement consisting of two rock series: Paleozoic crustal units with a Mesozoic allochthonous ophiolitic complex and ~1300 m thick Upper Miocene-Lower Pliocene sedimentary sequence. Plio-Quaternary sediments and Quaternary volcanics unconformably overlie the deformed and folded Miocene beds. Quaternary alkali-basaltic volcanism, derived from a metasomatized asthenospheric or lithospheric mantle, is most probably related to the syn-collisional transtensional strike-slip deformation in the area. Active faults in the region have the potential to generate catastrophic earthquakes (M>7). Nineteen samples of cold and thermal groundwaters have been collected over the Amik Basin area for dissolved gas analyses as well as two samples from the gas seeps, and one bubbling gas from a thermal spring Samples were analysed for their chemical and isotopic (He, C) composition. On the basis of their chemical composition, three main groups can be recognized. Most of the dissolved gases (16; Group I) collected from springs or shallow wells (< 150 m depth), contain mainly atmospheric gasses with very limited H2 (< 80 ppm) and CH4 (1– 2700 ppm) contents and minor concentrations of CO2 (0.5–11.2 %). The isotopic composition of Total Dissolved Carbon evidences a prevailing organic contribution with possible dissolution of carbonate rocks. However the CO2-richest sample shows a small but significant deep (probably mantle) contribution which is also evidenced by its He isotopic composition. Further three samples, taken from the northern part of the basin close to Quaternary volcanic outcrops and main tectonic structures, also exhibit a small mantle He contribution (Fig. 1). The two dissolved gases (Group II) collected from deep boreholes (> 1200 m depth) are typical of hydrocarbon reservoirs being very rich in CH4 (> 78 %) and N2 (> 13%). The water composition of these samples is also distinctive of saline connate waters (Cl- and B-rich, SO4-poor). Isotopic composition of methane (ή13C ~ -65‰) indicates a biogenic origin while He-isotopic composition points to a prevailing crustal signature for one (R/Ra 0.16) of the sites and a small mantle contribution for the other (R/Ra 0.98) (Fig. 1). The three free gas samples (Group III), taken at two sites within the ophiolitic basement west of the basin, have the typical composition of gas generated by low temperature serpentinisation processes with high hydrogen (37–50 %) and methane (10–61 %) concentrations. While all three gases show an almost identical ήD-H2 of ~ -750‰, two of them display an isotopic composition of methane (ή13C ~ -5‰; ήD ~ -105‰) and a C1/[C2+C3] ratio (~100) typical of abiogenic hydrocarbons and a significant contribution of mantle-type helium (R/Ra: 1.33). The composition of these two gasses is comparable to that of the gasses issuing in similar geologic conditions (Chimera-Turkey, Zambales-Philippine and Oman ophiolites). The gas composition of the other site evidences a contribution of a crustal (thermogenic) component (ή13C-CH4 ~ -30‰; ήD-CH4 ~ -325‰; C1/[C2+C3] ~ 3000). Such crustal contribution is also supported by higher N2 contents (40% instead of 2%) and lower He-isotopic composition (R/Ra 0.07) (Fig. 1). These first results highlight contributions of mantle-derived volatiles possibly drained towards shallow levels by the DSF and other parallel structures crossing the basin showing a tectonic control of the fluids circulating within the Basin

    Does type of hospital ownership influence physicians' daily work schedules? An observational real-time study in German hospital departments

    Get PDF
    Background: During the last two decades the German hospital sector has been engaged in a constant process of transformation. One obvious sign of this is the growing amount of hospital privatization. To date, most research studies have focused on the effects of privatization regarding financial outcomes and quality of care, leaving important organizational issues unexplored. Yet little attention has been devoted to the effects of privatization on physicians' working routines. The aim of this observational real-time study is to deliver exact data about physicians' work at hospitals of different ownership. By analysing working hours, further impacts of hospital privatization can be assessed and areas of improvement identified. Methods: Observations were made by shadowing 100 physicians working in private, for-profit or non-profit as well as public hospital departments individually during whole weekday shifts in urban German settings. A total of 300 days of observations were conducted. All working activities were recorded, accurate to the second, by using a mobile personal computer. Results: Results have shown significant differences in physicians' working activities, depending on hospital ownership, concerning working hours and time spent on direct and indirect patient care. Conclusion: This is the first real-time analysis on differences in work activities depending on hospital ownership. The study provides an objective insight into physicians' daily work routines at hospitals of different ownership, with additional information on effects of hospital privatization

    Stereotaxical Infusion of Rotenone: A Reliable Rodent Model for Parkinson's Disease

    Get PDF
    A clinically-related animal model of Parkinson's disease (PD) may enable the elucidation of the etiology of the disease and assist the development of medications. However, none of the current neurotoxin-based models recapitulates the main clinical features of the disease or the pathological hallmarks, such as dopamine (DA) neuron specificity of degeneration and Lewy body formation, which limits the use of these models in PD research. To overcome these limitations, we developed a rat model by stereotaxically (ST) infusing small doses of the mitochondrial complex-I inhibitor, rotenone, into two brain sites: the right ventral tegmental area and the substantia nigra. Four weeks after ST rotenone administration, tyrosine hydroxylase (TH) immunoreactivity in the infusion side decreased by 43.7%, in contrast to a 75.8% decrease observed in rats treated systemically with rotenone (SYS). The rotenone infusion also reduced the DA content, the glutathione and superoxide dismutase activities, and induced alpha-synuclein expression, when compared to the contralateral side. This ST model displays neither peripheral toxicity or mortality and has a high success rate. This rotenone-based ST model thus recapitulates the slow and specific loss of DA neurons and better mimics the clinical features of idiopathic PD, representing a reliable and more clinically-related model for PD research

    Brain-Performance Correlates of Working Memory Retrieval in Schizophrenia: A Cognitive Modeling Approach

    Get PDF
    Correlations of cognitive functioning with brain activation during a sternberg item recognition paradigm (SIRP) were investigated in patients with schizophrenia and in healthy controls studied at 8 sites. To measure memory scanning times, 4 response time models were fit to SIRP data. The best fitting model assumed exhaustive serial memory scanning followed by self-terminating memory search and involved one intercept parameter to represent SIRP processes not contributing directly to memory scanning. Patients displayed significantly longer response times with increasing memory load and differed on the memory scanning, memory search, and intercept parameters of the best fitting probability model. Groups differed in the correlation between the memory scanning parameter and linear brain response to increasing memory load within left inferior and left middle frontal gyrus, bilateral caudate, and right precuneus. The pattern of findings in these regions indicated that high scanning capacity was associated with high neural capacity among healthy subjects but that scanning speed was uncoupled from brain response to increasing memory load among schizophrenia patients. Group differences in correlation of the best fitting model's scanning parameter with a quadratic trend in brain response to increasing memory load suggested inefficient or disordered patterns of neural inhibition among individuals with schizophrenia, especially in the left perirhinal and entorhinal cortices. The results show at both cognitive and neural levels that disordered memory scanning contributes to deficient SIRP performance among schizophrenia patients

    Measuring quality of life in Duchenne muscular dystrophy : a systematic review of the content and structural validity of commonly used instruments

    Get PDF
    Duchenne muscular dystrophy (DMD) is an inherited X-linked neuromuscular disorder. A number of questionnaires are available to assess quality of life in DMD, but there are concerns about their validity. This systematic review aimed to appraise critically the content and structural validity of quality of life instruments for DMD. Five databases (EMBASE, MEDLINE, CINAHL, PsycINFO, and Cochrane Library) were searched, with supplementary searches in Google Scholar. We included articles with evidence on the content and/or structural validity of quality of life instruments in DMD, and/or instrument development. Evidence was evaluated against the Consensus-based Standards for the selection of health Measurement INstruments (COSMIN) criteria. Fifty five articles featured a questionnaire assessing quality of life in DMD. Forty instruments were extracted and 26 underwent assessment. Forty-one articles contained evidence on content or structural validity (including 37 development papers). Most instruments demonstrated low quality evidence and unsatisfactory or inconsistent validity in DMD, with the majority not featuring direct validation studies in this population. Only KIDSCREEN received an adequate rating for instrument design and a satisfactory result for content validity based on its development, yet, like the majority of PROMs, the measure has not been directly validated for use in DMD. Further research is needed on the validity of quality of life instruments in DMD, including content and structural validity studies in this population
    • 

    corecore