71 research outputs found
Simultaneous TE Analysis of 19 Heliconiine Butterflies Yields Novel Insights into Rapid TE-Based Genome Diversification and Multiple SINE Births and Deaths
Transposable elements (TEs) play major roles in the evolution of genome structure and function. However, because of their repetitive nature, they are difficult to annotate and discovering the specific roles they may play in a lineage can be a daunting task. Heliconiine butterflies are models for the study of multiple evolutionary processes including phenotype evolution and hybridization. We attempted to determine how TEs may play a role in the diversification of genomes within this clade by performing a detailed examination of TE content and accumulation in 19 species whose genomes were recently sequenced. We found that TE content has diverged substantially and rapidly in the time since several subclades shared a common ancestor with each lineage harboring a unique TE repertoire. Several novel SINE lineages have been established that are restricted to a subset of species. Furthermore, the previously described SINE, Metulj, appears to have gone extinct in two subclades while expanding to significant numbers in others. This diversity in TE content and activity has the potential to impact how heliconiine butterflies continue to evolve and diverge
Insights into mammalian TE diversity through the curation of 248 genome assemblies
[INTRODUCTION] An estimated 160 million years have passed since the first placental mammals evolved. These eutherians are categorized into 19 orders consisting of nearly 4000 extant species, with ~70% being bats or rodents. Broad, in-depth, and comparative genomic studies across Eutheria have previously been unachievable because of the lack of genomic resources. The collaboration of the Zoonomia Consortium made available hundreds of high-quality genome assemblies for comparative analysis. Our focus within the consortium was to investigate the evolution of transposable elements (TEs) among placental mammals. Using these data, we identified previously known TEs, described previously unknown TEs, and analyzed the TE distribution among multiple taxonomic levels.[RATIONALE] The emergence of accurate and affordable sequencing technology has propelled efforts to sequence increasingly more nonmodel mammalian genomes in the past decade. Most of these efforts have traditionally focused on genic regions searching for patterns of selection or variation in gene regulation. The common trend of ignoring or trivializing TE annotation with newly published genomes has resulted in severe lag of TE analyses, leading to extensive undiscovered TE variation. This oversight has neglected an important source of evolution because the accumulation of TEs is attributable to drastic alterations in genome architecture, including insertions, deletions, duplications, translocations, and inversions. Our approach to the Zoonomia dataset was to provide future inquirers accurate and meticulous TE curations and to describe taxonomic variation among eutherians.[RESULTS] We annotated the TE content of 248 mammalian genome assemblies, which yielded a library of 25,676 consensus TE sequences, 8263 of which were previously unidentified TE sequences (available at https://dfam.org). We affirmed that the largest component of a typical mammalian genome is comprised of TEs (average 45.6%). Of the 248 assemblies, the lowest genomic percentage of TEs was found in the star-nosed mole (27.6%), and the largest percentage was seen in the aardvark (74.5%), whose increase in TE accumulation drove a corresponding increase in genome size—a correlation we observed across Eutheria. The overall genomic proportions of recently accumulated TEs were roughly similar across most mammals in the dataset, with a few notable exceptions (see the figure). Diversity of recently accumulated TEs is highest among multiple families of bats, mostly driven by substantial DNA transposon activity. Our data also exhibit an increase of recently accumulated DNA transposons among carnivore lineages over their herbivorous counterparts, which suggests that diet may play a role in determining the genomic content of TEs.[CONCLUSION] The copious TE data provided in this work emanated from the largest comprehensive TE curation effort to date. Considering the wide-ranging effects that TEs impose on genomic architecture, these data are an important resource for future inquiries into mammalian genomics and evolution and suggest avenues for continued study of these important yet understudied genomic denizens.This project was partially supported by NSF grant DEB 1838283 (D.D.M.-S. and D.A.R.), NSF grant IOS 2032006 (D.D.M.-S. and D.A.R.), National Institutes of Health (NIH) grant R01HG002939 (J.M.S., R.H., A.F.A.S., and J.Ros.), NIH grant U24HG010136 (J.M.S., R.H., A.F.A.S., and J.Ros.), NSF grant DEB 1838273 (L.M.D.), NSF grant DGE 1633299 (L.M.D.), NIH grant NHGRI R01HG008742 (Zoonomia Consortium), and a Swedish Research Council Distinguished Professor Award (Zoonomia Consortium).Peer reviewe
Surgical treatment of adolescent idiopathic scoliosis with a minimal invasive dynamic correction system -A preliminary report of A 24-month follow-up
Functional Ultrasound Imaging of the Brain: Theory and Basic Principles
Hemodynamic changes in the brain are often used as surrogates of neuronal activity to infer the loci of brain activity. A major limitation of conventional Doppler ultrasound for the imaging of these changes is that it is not sensitive enough to detect the blood flow in small vessels where the major part of the hemodynamic response occurs. Here, we present a mu Doppler ultrasound method able to detect and map the cerebral blood volume (CBV) over the entire brain with an important increase in sensitivity. This method is based on imaging the brain at an ultrafast frame rate (1 kHz) using compounded plane wave emissions. A theoretical model demonstrates that the gain in sensitivity of the mu Doppler method is due to the combination of 1) the high signal-to-noise ratio of the gray scale images, resulting from the synthetic compounding of backscattered echoes; and 2) the extensive signal averaging enabled by the high temporal sampling of ultrafast frame rates. This mu Doppler imaging is performed in vivo on trepanned rats without the use of contrast agents. The resulting images reveal detailed maps of the rat brain vascularization with an acquisition time as short as 320 ms per slice. This new method is the basis for a real-time functional ultrasound (fUS) imaging of the brain
Fully-automatic ultrasound-based neuro-navigation : The functional ultrasound brain GPS
Abstract
Recent advances in ultrasound imaging triggered by ultrafast plane waves transmission have rendered functional ultrasound (fUS) imaging a valuable neuroimaging modality capable of mapping cerebral vascular networks, but also to indirectly capture neuronal activity with high sensitivity thanks to the neurovascular coupling. However, the expansion of fUS imaging is still limited by the difficulty to identify cerebral structures during experiments based solely on the Doppler images and the shape of the vessels. In order to tackle this challenge, this study introduces the vascular brain positioning system (BPS), a GPS of the brain. The BPS is a whole-brain neuro-navigation system based on the on-the-fly automatic alignment of ultrafast ultrasensitive transcranial Power Doppler volumic images to common templates such as the Allen mouse brain Common Coordinates Framework. This method relies on the online registration of the complex cerebral vascular fingerprint of the studied animal to a pre-aligned reference vascular atlas, thus allowing rapid matching and identification of brain structures. We quantified the accuracy of the automatic registration using super-resolution vascular images obtained at the microscopic scale using Ultrasound Localization Microscopy and found a positioning error of 44 µm and 96 µm for intra-animal and inter-animals vascular registration, respectively. The proposed BPS approach outperforms the manual vascular landmarks recognition performed by expert neuroscientists (inter-annotator errors of 215 µm and 259 µm). Using the online BPS approach coupled with the Allen Atlas, we demonstrated the capability of the system to position itself automatically over chosen anatomical structures and to obtain corresponding functional activation maps even in complex oblique planes. Finally, we show that the system can be used to acquire and estimate functional connectivity matrices automatically. The proposed functional ultrasound on the fly neuro-navigation approach allows automatic brain navigation and could become a key asset to ensure standardized experiments and protocols for non-expert and expert researchers.</jats:p
A functional ultrasound brain GPS for automatic vascular-based neuronavigation
AbstractRecent advances in ultrasound imaging triggered by transmission of ultrafast plane waves have rendered functional ultrasound (fUS) imaging a valuable neuroimaging modality capable of mapping cerebral vascular networks, but also for the indirect capture of neuronal activity with high sensitivity thanks to the neurovascular coupling. However, the expansion of fUS imaging is still limited by the difficulty to identify cerebral structures during experiments based solely on the Doppler images and the shape of the vessels. In order to tackle this challenge, this study introduces the vascular brain positioning system (BPS), a GPS of the brain. The BPS is a whole-brain neuronavigation system based on the on-the-fly automatic alignment of ultrafast ultrasensitive transcranial Power Doppler volumic images to common templates such as the Allen Mouse Brain Common Coordinates Framework. This method relies on the online registration of the complex cerebral vascular fingerprint of the studied animal to a pre-aligned reference vascular atlas, thus allowing rapid matching and identification of brain structures. We quantified the accuracy of the automatic registration using super-resolution vascular images obtained at the microscopic scale using Ultrasound Localization Microscopy and found a positioning error of 44 µm and 96 µm for intra-animal and inter-animal vascular registration, respectively. The proposed BPS approach outperforms the manual vascular landmark recognition performed by expert neuroscientists (inter-annotator errors of 215 µm and 259 µm). Using the online BPS approach coupled with the Allen Atlas, we demonstrated the capability of the system to position itself automatically over chosen anatomical structures and to obtain corresponding functional activation maps even in complex oblique planes. Finally, we show that the system can be used to acquire and estimate functional connectivity matrices automatically. The proposed functional ultrasound on-the-fly neuronavigation approach allows automatic brain navigation and could become a key asset to ensure standardized experiments and protocols for non-expert and expert researchers.</jats:p
A quantitative acoustic analysis of the vocal repertoire of the common marmoset ( Callithrix jacchus
Transposable Elements in Bats Show Differential Accumulation Patterns Determined by Class and Functionality
Bat genomes are characterized by a diverse transposable element (TE) repertoire. In particular, the genomes of members of the family Vespertilionidae contain both active retrotransposons and active DNA transposons. Each TE type is characterized by a distinct pattern of accumulation over the past ~40 million years. Each also exhibits its own target site preferences (sometimes shared with other TEs) that impact where they are likely to insert when mobilizing. Therefore, bats provide a great resource for understanding the diversity of TE insertion patterns. To gain insight into how these diverse TEs impact genome structure, we performed comparative spatial analyses between different TE classes and genomic features, including genic regions and CpG islands. Our results showed a depletion of all TEs in the coding sequence and revealed patterns of species- and element-specific attraction in the transcript. Trends of attraction in the distance tests also suggested significant TE activity in regions adjacent to genes. In particular, the enrichment of small, non-autonomous TE insertions in introns and near coding regions supports the hypothesis that the genomic distribution of TEs is the product of a balance of the TE insertion preference in open chromatin regions and the purifying selection against TEs within genes
405 SUPERSONIC SHEAR IMAGING IS A NEW POTENT MORPHOLOGICAL NON-INVASIVE TECHNIQUE TO ASSESS OF LIVER FIBROSIS. PART II: COMPARISON WITH FIBROSCAN
406 SUPERSONIC SHEAR IMAGING IS A NEW POTENT MORPHOLOGICAL NON-INVASIVE TECHNIQUE TO ASSESS LIVER FIBROSIS. PART I: TECHNICAL FEASABILITY
- …
