257 research outputs found
Remarkable similarity in timing of absorptive fine-root production across 11 diverse temperate tree species in a common garden
Long-term minirhizotron observations of absorptive fine roots provide insights into seasonal patterns of belowground root production and carbon dynamics. Our objective was to compare root dynamics over time across mature individuals of 11 temperate trees species: five evergreen and six deciduous. We analyzed the timing and growth on 1st-and 2nd-order roots in minirhizotron images down to a vertical depth of 35 cm, as well as monthly and total annual length production. Production patterns were related to total annual precipitation of the actual and previous year of root production over 6 years. The main or largest peak of annual fine-root production occurred between June and September for almost all species and years. In most years, when peaks occurred, the timing of peak root production was synchronized across all species. A linear mixed model revealed significant differences in monthly fine-root length production across species in certain years (species x year, P < 0.0001), which was strongly influenced by three tree species. Total annual root production was much higher in 2000–2002, when there was above-average rainfall in the previous year, compared with production in 2005–2007, which followed years of lower-than-average rainfall (2003–2006). Compared to the wetter period all species experienced a decline of at least 75% in annual production in the drier years. Total annual root length production was more strongly associated with previous year’s (P < 0.001) compared with the actual year’s precipitation (P = 0.003). Remarkably similar timing of monthly absorptive fine-root growth can occur across multiple species of diverse phylogeny and leaf habit in a given year, suggesting a strong influence of extrinsic factors on absorptive fine-root growth. The influence of previous year precipitation on annual absorptive fine-root growth underscores the importance of legacy effects in biological responses and suggests that a growth response of temperate trees to extreme precipitation or drought events can be exacerbated across years
Needle nutrients in geographically diverse Pinus sylvestris L. populations
Journal URL: http://www.afs-journal.org/Nutrient availability differs across climatic gradients, yet the role of genetic variation in potentially adaptive traits related to nutrient acquisition remains poorly understood. We examined needles of diverse Scots pine provenances grown under common-garden conditions throughout their entire life span. Based on similarities in nutrient concentration patterns, two groups of populations were identified. One comprised northern populations from 60° to 56° N, and another included populations from locations between 56° and 49° N. Northern populations sustained significantly higher concentrations of N, P, Ca, Mg, Na, Zn, Cu and Pb. Only K concentration was persistently lower in northern plants. We conclude that intraspecific genetic differences exist in foliage nutrient concentration among diverse populations. Since in northern conditions nutrient availability is often limited as a result of interactions between temperature, litter quality and its mineralization, a tendency toward higher foliage concentrations of macronutrients can be an adaptive feature enhancing plants metabolic activity in their native habitats
Decomposition of the finest root branching orders: Linking belowground dynamics to fine-root function and structure
Root turnover is fastest in the finest roots of the root system (first root order). Additionally, tissue chemistry varies among even the finest root orders and between white roots and older, pigmented roots. Yet the effects of pigmentation and order on root decomposition have rarely been examined. We separated the first four root orders (all <1 mm) of four temperate tree species into three classes: white first- and second-order roots; pigmented first- and second-order roots; and pigmented third- and fourth-order roots. Roots were enclosed in litterbags and buried under their own and under a common species canopy in a 34-year-old common garden in Poland. When comparing decomposition of different root orders over 36 months, pigmented third- and fourth-order roots with a higher C:N ratio decomposed more rapidly, losing 20–40% of their mass, than pigmented first- and second-order roots, which lost no more than 20%. When comparing decomposition of roots of different levels of pigmentation within the same root order over 14 months, pigmented (older) first- and second-order roots lost ∼10% of their mass, while white (younger) first- and second-order roots lost ∼30%. In contrast to root mass loss, root N content declined more rapidly in the first- and second-order roots than in third- and fourth-order roots. In higher-order roots, N increased in the first 10 months from ∼110% to nearly 150% of initial N content, depending on species; by the end of the study N content had returned to initial levels. These findings suggest that, in plant communities where root mortality is primarily of pigmented first- and second-order roots, microbial decomposition may be slower than estimates derived from bulk fine-root litterbag experiments, which typically contain at least four root orders. Thus, a more mechanistic understanding of root decomposition and its contribution to ecosystem carbon and nutrient dynamics requires a fundamental shift in experimental methods that stratifies root samples for decomposition along more functionally based criteria such as root order and pigmentation, which parallel the markedly different longevities of these different root classes.Goebel, Marc; Hobbie, Sarah E; Bulaj, Bartosz; Zadworny, Marcin; Archibald, Douglas D; Oleksyn, Jacek; Reich, Peter B; Eissenstat, David M. (2011). Decomposition of the finest root branching orders: Linking belowground dynamics to fine-root function and structure. Retrieved from the University Digital Conservancy, http://dx.doi.org/10.1890/09-2390.1
Functional distinctiveness of major plant lineages
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106060/1/jec12208.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106060/2/jec12208-sup-0001-Supp_Info.pd
Evenness mediates the global relationship between forest productivity and richness
1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions
The global biogeography of tree leaf form and habit
Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling
Seasonal Dynamics of Mobile Carbon Supply in Quercus aquifolioides at the Upper Elevational Limit
Many studies have tried to explain the physiological mechanisms of the alpine treeline phenomenon, but the debate on the alpine treeline formation remains controversial due to opposite results from different studies. The present study explored the carbon-physiology of an alpine shrub species (Quercus aquifolioides) grown at its upper elevational limit compared to lower elevations, to test whether the elevational limit of alpine shrubs (<3 m in height) are determined by carbon limitation or growth limitation. We studied the seasonal variations in non-structural carbohydrate (NSC) and its pool size in Q. aquifolioides grown at 3000 m, 3500 m, and at its elevational limit of 3950 m above sea level (a.s.l.) on Zheduo Mt., SW China. The tissue NSC concentrations along the elevational gradient varied significantly with season, reflecting the season-dependent carbon balance. The NSC levels in tissues were lowest at the beginning of the growing season, indicating that plants used the winter reserve storage for re-growth in the early spring. During the growing season, plants grown at the elevational limit did not show lower NSC concentrations compared to plants at lower elevations, but during the winter season, storage tissues, especially roots, had significantly lower NSC concentrations in plants at the elevational limit compared to lower elevations. The present results suggest the significance of winter reserve in storage tissues, which may determine the winter survival and early-spring re-growth of Q. aquifolioides shrubs at high elevation, leading to the formation of the uppermost distribution limit. This result is consistent with a recent hypothesis for the alpine treeline formation
- …