2,730 research outputs found

    Building Morphological Chains for Agglutinative Languages

    Get PDF
    In this paper, we build morphological chains for agglutinative languages by using a log-linear model for the morphological segmentation task. The model is based on the unsupervised morphological segmentation system called MorphoChains. We extend MorphoChains log linear model by expanding the candidate space recursively to cover more split points for agglutinative languages such as Turkish, whereas in the original model candidates are generated by considering only binary segmentation of each word. The results show that we improve the state-of-art Turkish scores by 12% having a F-measure of 72% and we improve the English scores by 3% having a F-measure of 74%. Eventually, the system outperforms both MorphoChains and other well-known unsupervised morphological segmentation systems. The results indicate that candidate generation plays an important role in such an unsupervised log-linear model that is learned using contrastive estimation with negative samples.Comment: 10 pages, accepted and presented at the CICLing 2017 (18th International Conference on Intelligent Text Processing and Computational Linguistics

    Lattice Gauge Fields Topology Uncovered by Quaternionic sigma-model Embedding

    Full text link
    We investigate SU(2) gauge fields topology using new approach, which exploits the well known connection between SU(2) gauge theory and quaternionic projective sigma-models and allows to formulate the topological charge density entirely in terms of sigma-model fields. The method is studied in details and for thermalized vacuum configurations is shown to be compatible with overlap-based definition. We confirm that the topological charge is distributed in localized four dimensional regions which, however, are not compatible with instantons. Topological density bulk distribution is investigated at different lattice spacings and is shown to possess some universal properties.Comment: revtex4, 19 pages (24 ps figures included); replaced to match the published version, to appear in PRD; minor changes, references adde

    ³¹P Saturation Transfer and Phosphocreatine Imaging in the Monkey Brain

    Get PDF
    ³¹P magnetic resonance imaging with chemical-shift discrimination by selective excitation has been employed to determine the phosphocreatine (PCr) distribution in the brains of three juvenile macaque monkeys. PCr images were also obtained while saturating the resonance of the {gamma}-phosphate of ATP, which allowed the investigation of the chemical exchange between PCr and the {gamma}-phosphate of ATP catalyzed by creatine kinase. Superposition of the PCr images over the proton image of the same monkey brain revealed topological variations in the distribution of PCr and creatine kinase activity. PCr images were also obtained with and without visual stimulation. In two out of four experiments, an apparently localized decrease in PCr concentration was noted in visual cortex upon visual stimulation. This result is interpreted in terms of a possible role for the local ADP concentration in stimulating the accompanying metabolic response

    Interacting Growth Walk - a model for hyperquenched homopolymer glass?

    Full text link
    We show that the compact self avoiding walk configurations, kinetically generated by the recently introduced Interacting Growth Walk (IGW) model, can be considered as members of a canonical ensemble if they are assigned random values of energy. Such a mapping is necessary for studying the thermodynamic behaviour of this system. We have presented the specific heat data for the IGW, obtained from extensive simulations on a square lattice; we observe a broad hump in the specific heat above the θ\theta-point, contrary to expectation.Comment: 4 figures; Submitted to PR

    Direct evidence for the magnetic ordering of Nd ions in NdMn2_2Si2_2 and NdMn2_2Ge2_2 by high resolution inelastic neutron scattering

    Full text link
    We have investigated the low energy nuclear spin excitations in NdMn2_2Si2_2 and NdMn2_2Ge2_2 by high resolution inelastic neutron scattering. Previous neutron diffraction investigations gave ambiguous results about Nd magnetic ordering at low temperatures. The present element-specific technique gave direct evidence for the magnetic ordering of Nd ions. We found considerable difference in the process of the Nd magnetic ordering at low temperature in NdMn2_2Si2_2 and NdMn2_2Ge2_2. Our results are consistent with those of magnetization and recent neutron diffraction measurements

    Brauer group of moduli spaces of pairs

    Get PDF
    We show that the Brauer group of any moduli space of stable pairs with fixed determinant over a curve is zero.Comment: 12 pages. Final version, accepted in Communications in Algebr

    Modeling the Spatially Varying Water Balance Processes in a Semi- Arid Mountainous Watershed of Idaho

    Get PDF
    Mountainous watersheds in semi-arid regions are complex hydrologic systems. To critically evaluate the hydrological processes, high resolution spatio-temporal information is necessary. Also, calibrating and validating a watershed-scale model is necessary to enable our understanding of the water balance components in the gauged watersheds. The distributed Soil Water Assessment Tool (SWAT) hydrologic model was applied to a research watershed, the Dry Creek Experimental Watershed (DCEW), near Boise Idaho to investigate its water balance components both temporally and spatially. Daily streamflow data from four streamflow gauges were used for calibration and validation of the model. Monthly estimates of streamflow during the calibration phase by SWAT produced satisfactory results with a Nash Sutcliffe coefficient of model efficiency 0.79. Since it is a continuous simulation model, as opposed to an event-based model, it demonstrated the limited ability in capturing both streamflow and soil moisture for selected rain-on-snow events during the validation period between 2005-07. Our implementation of SWAT showed that seasonal and annual water balance partitioning of precipitation into evapotranspiration, streamflow, soil moisture and drainage was not only possible but closely followed the trends of a typical semiarid watershed in the intermountain west. This study highlights the necessity for better techniques to precisely identify and drive the model with commonly observed climatic inversion-related snowmelt or rain-on-snow weather events. Estimation of key parameters pertaining to soil (e.g., available water content and saturated hydraulic conductivity), snow (e.g., lapse rates, melting) and vegetation (e.g., leaf area index and maximum canopy index) using additional field observations in the watershed is critical for better prediction

    Central extensions of current groups in two dimensions

    Full text link
    In this paper we generalize some of these results for loop algebras and groups as well as for the Virasoro algebra to the two-dimensional case. We define and study a class of infinite dimensional complex Lie groups which are central extensions of the group of smooth maps from a two dimensional orientable surface without boundary to a simple complex Lie group G. These extensions naturally correspond to complex curves. The kernel of such an extension is the Jacobian of the curve. The study of the coadjoint action shows that its orbits are labelled by moduli of holomorphic principal G-bundles over the curve and can be described in the language of partial differential equations. In genus one it is also possible to describe the orbits as conjugacy classes of the twisted loop group, which leads to consideration of difference equations for holomorphic functions. This gives rise to a hope that the described groups should possess a counterpart of the rich representation theory that has been developed for loop groups. We also define a two-dimensional analogue of the Virasoro algebra associated with a complex curve. In genus one, a study of a complex analogue of Hill's operator yields a description of invariants of the coadjoint action of this Lie algebra. The answer turns out to be the same as in dimension one: the invariants coincide with those for the extended algebra of currents in sl(2).Comment: 17 page
    corecore