2,845 research outputs found

    Evaluation of the Northern Territory Library's Libraries and Knowledge Centres Model

    Full text link
    Evaluation of the Northern Territory Library's model for Libraries and Knowledge Centres in Indigenous communities

    Intrinsic intermediate gap states of TiOâ‚‚ materials and their roles in charge carrier kinetics

    Get PDF
    Titanium dioxide (TiO 2 ) is regarded as an important prototype photocatalytic material for several decades. The charge carrier kinetics determines the photocatalytic properties of TiO 2 materials; this is found to be greatly dependent on electronic structures. It has been revealed that the intrinsic intermediate gap states (intrinsic GSs) play a significant role in charge carrier kinetics that drive the photocatalytic processes of TiO 2 materials, which are not well summarized until now. Motivated by this thought, the purpose of this review focuses on physiochemical science of the intrinsic GSs of TiO 2 materials and their important role in charge carrier kinetics. We first give a summary on the chemical resources of the intrinsic GSs in TiO 2 and their physiochemical nature. Their general energy distribution, charge carrier population, and the associated thermodynamic properties are also elaborated from an overall viewpoint. We further carefully summarize and compare the experimental studies on the energy and the density distribution of the intrinsic GSs and discuss the associated chemical resources and charge carrier localizations. Trapping is the dominant function of intrinsic GSs in the charge carrier kinetics of TiO 2 materials. The significant effect of trapping on the transport, recombination, and interfacial transfer of charge carriers are also comprehensive summarized. Furthermore, the effects of charge carrier kinetics on photocatalytic performances are also discussed to some extents. Because of the importance of intrinsic GSs in modulating charge carrier kinetics, it is expected to increase the photocatalytic activity by engineering the intrinsic GSs, not only for TiO 2 materials, but also for the other semiconductor photocatalysts

    Scaling and Crossover to Tricriticality in Polymer Solutions

    Full text link
    We propose a scaling description of phase separation of polymer solutions. The scaling incorporates three universal limiting regimes: the Ising limit asymptotically close to the critical point of phase separation, the "ideal-gas" limit for the pure-solvent phase, and the tricritical limit for the polymer-rich phase asymptotically close to the theta point. We have also developed a phenomenological crossover theory based on the near-tricritical-point Landau expansion renormalized by fluctuations. This theory validates the proposed scaled representation of experimental data and crossover to tricriticality.Comment: 4 pages, 3 figure

    Two-fluid dynamics in driven YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6.48</sub>

    Get PDF
    Coherent optical excitation of certain phonon modes in YBa2Cu3O6+x has been shown to induce superconducting-like interlayer coherence at temperatures higher than Tc. Recent work has associated these phenomena to a parametric excitation and amplification of Josephson plasma polaritons, which are overdamped above Tc but are made coherent by the phonon drive. However, the dissipative response of uncondensed quasiparticles, which do not couple in the same way to the phonon drive, has not been addressed. Here, we investigate both the enhancement of the superfluid density, ωσ2(ω), and the dissipative response of quasiparticles, σ1(ω), by systematically tuning the duration and energy of the mid-infrared pulse while keeping the peak field fixed. We find that the photo-induced superfluid density saturates to the zero-temperature equilibrium value for pulses made longer than the phonon dephasing time, whilst the dissipative component continues to grow with increasing pulse duration. We show that superfluid and dissipation remain uncoupled as long as the drive is on, and identify an optimal regime of pump pulse durations for which the superconducting response is maximum and dissipation is minimized

    Two-fluid dynamics in driven YBa2_2Cu3_3O6.48_{6.48}

    Full text link
    Coherent optical excitation of certain phonon modes in YBa2_2Cu3_3O6+x_{6+x} has been shown to induce superconducting-like interlayer coherence at temperatures higher than TcT_c. Recent work has associated these phenomena to a parametric excitation and amplification of Josephson plasma polaritons, which are overdamped above TcT_c but are made coherent by the phonon drive. However, the dissipative response of uncondensed quasiparticles, which do not couple in the same way to the phonon drive, has not been addressed. Here, we investigate both the enhancement of the superfluid density, ωσ2(ω)\omega\sigma_2(\omega), and the dissipative response of quasiparticles, σ1(ω)\sigma_1(\omega), by systematically tuning the duration and energy of the mid-infrared pulse while keeping the peak field fixed. We find that the photo-induced superfluid density saturates to the zero-temperature equilibrium value for pulses made longer than the phonon dephasing time, whilst the dissipative component continues to grow with increasing pulse duration. We show that superfluid and dissipation remain uncoupled as long as the drive is on, and identify an optimal regime of pump pulse durations for which the superconducting response is maximum and dissipation is minimized.Comment: 14 pages, 8 figure

    Early-type Galaxies at z ~ 1.3. II. Masses and Ages of Early-type Galaxies in Different Environments and Their Dependence on Stellar Population Model Assumptions

    Get PDF
    We have derived masses and ages for 79 early-type galaxies (ETGs) in different environments at z ~ 1.3 in the Lynx supercluster and in the GOODS/CDF-S field using multi-wavelength (0.6-4.5 μm; KPNO, Palomar, Keck, Hubble Space Telescope, Spitzer) data sets. At this redshift the contribution of the thermally pulsing asymptotic giant branch (TP-AGB) phase is important for ETGs, and the mass and age estimates depend on the choice of the stellar population model used in the spectral energy distribution fits. We describe in detail the differences among model predictions for a large range of galaxy ages, showing the dependence of these differences on age. Current models still yield large uncertainties. While recent models from Maraston and Charlot & Bruzual offer better modeling of the TP-AGB phase with respect to less recent Bruzual & Charlot models, their predictions do not often match. The modeling of this TP-AGB phase has a significant impact on the derived parameters for galaxies observed at high redshift. Some of our results do not depend on the choice of the model: for all models, the most massive galaxies are the oldest ones, independent of the environment. When using the Maraston and Charlot & Bruzual models, the mass distribution is similar in the clusters and in the groups, whereas in our field sample there is a deficit of massive (M ≳ 10^(11) M_☉) ETGs. According to those last models, ETGs belonging to the cluster environment host on average older stars with respect to group and field populations. This difference is less significant than the age difference in galaxies of different masses

    Witnessing the Hierarchical Assembly of the Brightest Cluster Galaxy in a Cluster at z=1.26

    Get PDF
    We have obtained a new high-resolution K'-band image of the central region of the rich X-ray cluster RX J0848.9+4452 at z=1.26. We found that the brightest cluster galaxy (BCG) in the cluster is clearly separated into two distinct objects. Whereas the optical to near-infrared colors of the objects are consistent with the predictions of passive evolution models for galaxies formed at high redshift, the luminosities of the two galaxies are both considerably fainter than predicted by passive evolution of BCG's in low and intermediate redshift clusters. We argue that this is evidence of an on-going merger of normal cluster ellipticals to form the dominant galaxy in the core of RX J0848.9+4452. The two galaxies appear to point towards the nearby cluster ClG J0848+4453 and are aligned with the outer X-ray contour of their parent cluster, supporting a model of BCG formation by collimated infall along the surrounding large-scale structure.Comment: 14 pages, 5 figures, to be appeared in ApJ Letter

    On the Relationship between Convex Bodies Related to Correlation Experiments with Dichotomic Observables

    Get PDF
    In this paper we explore further the connections between convex bodies related to quantum correlation experiments with dichotomic variables and related bodies studied in combinatorial optimization, especially cut polyhedra. Such a relationship was established in Avis, Imai, Ito and Sasaki (2005 J. Phys. A: Math. Gen. 38 10971-87) with respect to Bell inequalities. We show that several well known bodies related to cut polyhedra are equivalent to bodies such as those defined by Tsirelson (1993 Hadronic J. S. 8 329-45) to represent hidden deterministic behaviors, quantum behaviors, and no-signalling behaviors. Among other things, our results allow a unique representation of these bodies, give a necessary condition for vertices of the no-signalling polytope, and give a method for bounding the quantum violation of Bell inequalities by means of a body that contains the set of quantum behaviors. Optimization over this latter body may be performed efficiently by semidefinite programming. In the second part of the paper we apply these results to the study of classical correlation functions. We provide a complete list of tight inequalities for the two party case with (m,n) dichotomic observables when m=4,n=4 and when min{m,n}<=3, and give a new general family of correlation inequalities.Comment: 17 pages, 2 figure
    • …
    corecore