1,724 research outputs found

    Mitigating smart card fault injection with link-time code rewriting: a feasibility study

    Get PDF
    We present a feasibility study to protect smart card software against fault-injection attacks by means of binary code rewriting. We implemented a range of protection techniques in a link-time rewriter and evaluate and discuss the obtained coverage, the associated overhead and engineering effort, as well as its practical usability

    Steady-state crystallization of Rydberg excitations in an optically driven lattice gas

    Full text link
    We study resonant optical excitations of atoms in a one-dimensional lattice to the Rydberg states interacting via the van der Waals potential which suppresses simultaneous excitation of neighboring atoms. Considering two- and three-level excitation schemes, we analyze the dynamics and stationary state of the continuously-driven, dissipative many-body system employing time-dependent density-matrix renormalization group (t-DMRG) simulations. We show that two-level atoms can exhibit only nearest neighbor correlations, while three-level atoms under dark-state resonant driving can develop finite-range crystalline order of Rydberg excitations. We present an approximate rate equation model whose analytic solution yields qualitative understanding of the numerical results.Comment: 5 pages,3 figure

    The Relationship Between Body Composition and Baseball Performance in Division II Baseball Players

    Get PDF
    Please view abstract in the attached PDF file

    Collision Detection and Administration Methods for Many Particles with Different Sizes

    Get PDF
    This paper deals with the calculation of the motion and the adminis-tration of the contacts for systems with many colliding bodies of round shape and possibly large size-differences. Both two dimensional (2D) and three dimensional (3D) cases are investigated, while the efficiency of the employed algorithms is compared. For the integration of the equations of motion, standard methods are used, but to reduce the effort for collision detection, more sophisticated administration algorithms for the neighbor-hood search are prosented. Especially for large systems with many parti-cles and a wide, polydisperse size distribution, this is a challenge. Three methods, the Verlet-Neighbor List (VL), the Linked Cell (LC) method, and the Linked Linear List (LLL), are discussed and compared for 2D and 3D. Only LLL performs well for strongly different particle sizes

    Establishing a Center to Support Faculty Research

    Get PDF
    This is the author's accepted manuscript. The original publication is available at http://dx.doi.org/10.1007/s10755-005-8347-z.This article describes the establishment in fall 2002 of a School of Education Research Center designed to support faculty in increasing productivity and quality in research. Details are provided about center goals, services, staffing, space, resources, and logistics during the first year of operation. In addition, data are shared about faculty usage of the Center, the level of faculty satisfaction with center services in the first year, and initial increases in faculty productivity. The article concludes with plans for continued data collection to monitor the impact of the Center, a discussion of lessons learned at this point in the Center's development, and possibilities for the evolution of the Center

    Prediction with Expert Advice under Discounted Loss

    Full text link
    We study prediction with expert advice in the setting where the losses are accumulated with some discounting---the impact of old losses may gradually vanish. We generalize the Aggregating Algorithm and the Aggregating Algorithm for Regression to this case, propose a suitable new variant of exponential weights algorithm, and prove respective loss bounds.Comment: 26 pages; expanded (2 remarks -> theorems), some misprints correcte

    Reflection of a Lieb-Liniger wave packet from the hard-wall potential

    Full text link
    Nonequilibrium dynamics of a Lieb-Liniger system in the presence of the hard-wall potential is studied. We demonstrate that a time-dependent wave function, which describes quantum dynamics of a Lieb-Liniger wave packet comprised of N particles, can be found by solving an NN-dimensional Fourier transform; this follows from the symmetry properties of the many-body eigenstates in the presence of the hard-wall potential. The presented formalism is employed to numerically calculate reflection of a few-body wave packet from the hard wall for various interaction strengths and incident momenta.Comment: revised version, improved notation, Fig. 5 adde
    corecore