229 research outputs found
The HB40-JUB1 transcriptional regulatory network controls gibberellin homeostasisin Arabidopsis
The phytohormones gibberellins (GAs) play fundamental roles in almost every aspect of plant growth and development. Although there is good knowledge about GA biosynthetic and signaling pathways, factors contributing to the mechanisms homeostatically controlling GA levels remain largely unclear. Here, we demonstrate that homeobox transcription factor HB40 of the HD-Zip family in Arabidopsis thaliana regulates GA content at two additive control levels. We show that HB40 expression is induced by GA and in turn reduces the levels of endogenous bioactive GAs by a simultaneous reduction of GA biosynthesis and increased GA deactivation. Hence, HB40 overexpression leads to typical GA-deficiency traits, such as small rosettes, reduced plant height, delayed flowering, and male sterility. In contrast, a loss-of-function hb40 mutation enhances GA-controlled growth. Genome-wide RNA-sequencing combined with molecular-genetic analyses revealed that HB40 directly activates transcription of JUNGBRUNNEN1 (JUB1), a key TF repressing growth by suppressing GA biosynthesis and signaling. HB40 also activates genes encoding GA 2-oxidases (GA2oxs) which are major GA catabolic enzymes. The effect of HB40 is ultimately mediated through induction of nuclear growth-repressing DELLA proteins. Our results thus uncover an important role of the HB40/JUB1/GA2ox/DELLA regulatory network in controlling GA homeostasis during plant growth.Plant science
ORS1, an H(2)O(2)-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana
We report here that ORS1, a previously uncharacterized member of the NAC transcription factor family, controls leaf senescence in Arabidopsis thaliana. Overexpression of ORS1 accelerates senescence in transgenic plants, whereas its inhibition delays it. Genes acting downstream of ORS1 were identified by global expression analysis using transgenic plants producing dexamethasone-inducible ORS1-GR fusion protein. Of the 42 up-regulated genes, 30 (similar to 70%) were previously shown to be up-regulated during age-dependent senescence. We also observed that 32 (similar to 76%) of the ORS1-dependent genes were induced by long-term (4 d), but not short-term (6 h) salinity stress (150 mM NaCl). Furthermore, expression of 16 and 24 genes, respectively, was induced after 1 and 5 h of treatment with hydrogen peroxide (H(2)O(2)), a reactive oxygen species known to accumulate during salinity stress. ORS1 itself was found to be rapidly and strongly induced by H(2)O(2) treatment in both leaves and roots. Using in vitro binding site selection, we determined the preferred binding motif of ORS1 and found it to be present in half of the ORS1-dependent genes. ORS1 is a paralog of ORE1/ANAC092/AtNAC2, a previously reported regulator of leaf senescence. Phylogenetic footprinting revealed evolutionary conservation of the ORS1 and ORE1 promoter sequences in different Brassicaceae species, indicating strong positive selection acting on both genes. We conclude that ORS1, similarly to ORE1, triggers expression of senescence-associated genes through a regulatory network that may involve cross-talk with salt- and H(2)O(2)-dependent signaling pathways
Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice
Background: Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Results: Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which can partly explain the observed differential TF gene expression. Conclusion: This study identified new gene targets with the potential to further enhance submergence tolerance in rice and provides insights into novel aspects of SUB1A-mediated tolerance.Niharika Sharma, Trang Minh Dang, Namrata Singh, Slobodan Ruzicic, Bernd Mueller-Roeber, Ute Baumann and Sigrid Heue
NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato
FWN – Publicaties zonder aanstelling Universiteit Leide
GabiPD: the GABI primary database—a plant integrative ‘omics’ database
The GABI Primary Database, GabiPD (http://www.gabipd.org/), was established in the frame of the German initiative for Genome Analysis of the Plant Biological System (GABI). The goal of GabiPD is to collect, integrate, analyze and visualize primary information from GABI projects. GabiPD constitutes a repository and analysis platform for a wide array of heterogeneous data from high-throughput experiments in several plant species. Data from different ‘omics’ fronts are incorporated (i.e. genomics, transcriptomics, proteomics and metabolomics), originating from 14 different model or crop species. We have developed the concept of GreenCards for text-based retrieval of all data types in GabiPD (e.g. clones, genes, mutant lines). All data types point to a central Gene GreenCard, where gene information is integrated from genome projects or NCBI UniGene sets. The centralized Gene GreenCard allows visualizing ESTs aligned to annotated transcripts as well as displaying identified protein domains and gene structure. Moreover, GabiPD makes available interactive genetic maps from potato and barley, and protein 2DE gels from Arabidopsis thaliana and Brassica napus. Gene expression and metabolic-profiling data can be visualized through MapManWeb. By the integration of complex data in a framework of existing knowledge, GabiPD provides new insights and allows for new interpretations of the data
A novel seed plants gene regulates oxidative stress tolerance in arabidopsis thaliana
Oxidative stress can lead to plant growth retardation, yield loss, and death. The atr7 mutant of Arabidopsis thaliana exhibits pronounced tolerance to oxidative stress. Using positional cloning, confirmed by knockout and RNA interference (RNAi) lines, we identified the atr7 mutation and revealed that ATR7 is a previously uncharacterized gene with orthologs in other seed plants but with no homology to genes in lower plants, fungi or animals. Expression of ATR7-GFP fusion shows that ATR7 is a nuclear-localized protein. RNA-seq analysis reveals that transcript levels of genes encoding abiotic- and oxidative stress-related transcription factors (DREB19, HSFA2, ZAT10), chromatin remodelers (CHR34), and unknown or uncharacterized proteins (AT5G59390, AT1G30170, AT1G21520) are elevated in atr7. This indicates that atr7 is primed for an upcoming oxidative stress via pathways involving genes of unknown functions. Collectively, the data reveal ATR7 as a novel seed plants-specific nuclear regulator of oxidative stress response
A novel seed plants gene regulates oxidative stress tolerance in arabidopsis thaliana
Oxidative stress can lead to plant growth retardation, yield loss, and death. The atr7 mutant of Arabidopsis thaliana exhibits pronounced tolerance to oxidative stress. Using positional cloning, confirmed by knockout and RNA interference (RNAi) lines, we identified the atr7 mutation and revealed that ATR7 is a previously uncharacterized gene with orthologs in other seed plants but with no homology to genes in lower plants, fungi or animals. Expression of ATR7-GFP fusion shows that ATR7 is a nuclear-localized protein. RNA-seq analysis reveals that transcript levels of genes encoding abiotic- and oxidative stress-related transcription factors (DREB19, HSFA2, ZAT10), chromatin remodelers (CHR34), and unknown or uncharacterized proteins (AT5G59390, AT1G30170, AT1G21520) are elevated in atr7. This indicates that atr7 is primed for an upcoming oxidative stress via pathways involving genes of unknown functions. Collectively, the data reveal ATR7 as a novel seed plants-specific nuclear regulator of oxidative stress response
A novel seed plants gene regulates oxidative stress tolerance in arabidopsis thaliana
Oxidative stress can lead to plant growth retardation, yield loss, and death. The atr7 mutant of Arabidopsis thaliana exhibits pronounced tolerance to oxidative stress. Using positional cloning, confirmed by knockout and RNA interference (RNAi) lines, we identified the atr7 mutation and revealed that ATR7 is a previously uncharacterized gene with orthologs in other seed plants but with no homology to genes in lower plants, fungi or animals. Expression of ATR7-GFP fusion shows that ATR7 is a nuclear-localized protein. RNA-seq analysis reveals that transcript levels of genes encoding abiotic- and oxidative stress-related transcription factors (DREB19, HSFA2, ZAT10), chromatin remodelers (CHR34), and unknown or uncharacterized proteins (AT5G59390, AT1G30170, AT1G21520) are elevated in atr7. This indicates that atr7 is primed for an upcoming oxidative stress via pathways involving genes of unknown functions. Collectively, the data reveal ATR7 as a novel seed plants-specific nuclear regulator of oxidative stress response
NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis
Senescence is a highly regulated process that involves the action of a large number of transcription factors. The NAC transcription factor ORE1 (ANAC092) has recently been shown to play a critical role in positively controlling senescence in Arabidopsis thaliana, however, no direct target gene through which it exerts its molecular function has been identified previously. Here, we report that BIFUNCTIONAL NUCLEASE1 (BFN1), a well-known senescence-enhanced gene, is directly regulated by ORE1. We detected elevated expression of BFN1 already 2 hours after induction of ORE1 in estradiol-inducible ORE1 overexpression lines and 6 hours after transfection of Arabidopsis mesophyll cell protoplasts with a 35S:ORE1 construct. ORE1 and BFN1 expression patterns largely overlap, as shown by promoter - reporter gene (GUS) fusions, while BFN1 expression in senescent leaves and the abscission zones of maturing flower organs was virtually absent in ore1 mutant background. In vitro binding site assays revealed a bipartite ORE1 binding site, similar to the one of ORS1, a paralog of ORE1. A bipartite ORE1 binding site was identified in the BFN1 promoter; mutating the cis element within the context of the full-length BFN1 promoter drastically reduced ORE1-mediated transactivation capacity in transiently transfected Arabidopsis mesophyll cell protoplasts. Furthermore, chromatin-immunoprecipitation (ChIP) demonstrates in vivo binding of ORE1 to the BFN1 promoter. We also demonstrate binding of ORE1 in vivo to the promoters of two other senescence-associated genes, i.e. SAG29/SWEET15 and SINA1, supporting the central role of ORE1 during senescence
- …