181 research outputs found
A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes
Copyright @ 2012, American Society for Microbiology.Human coronaviruses are associated with upper respiratory tract infections that occasionally spread to the lungs and other organs. Although airway epithelial cells represent an important target for infection, the respiratory epithelium is also composed of an elaborate network of dendritic cells (DCs) that are essential sentinels of the immune system, sensing pathogens and presenting foreign antigens to T lymphocytes. In this report, we show that in vitro infection by human coronavirus 229E (HCoV-229E) induces massive cytopathic effects in DCs, including the formation of large syncytia and cell death within only few hours. In contrast, monocytes are much more resistant to infection and cytopathic effects despite similar expression levels of CD13, the membrane receptor for HCoV-229E. While the differentiation of monocytes into DCs in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 requires 5 days, only 24 h are sufficient for these cytokines to sensitize monocytes to cell death and cytopathic effects when infected by HCoV-229E. Cell death induced by HCoV-229E is independent of TRAIL, FasL, tumor necrosis factor alpha, and caspase activity, indicating that viral replication is directly responsible for the observed cytopathic effects. The consequence of DC death at the early stage of HCoV-229E infection may have an impact on the early control of viral dissemination and on the establishment of long-lasting immune memory, since people can be reinfected multiple times by HCoV-229E
Ground states of unfrustrated spin Hamiltonians satisfy an area law
We show that ground states of unfrustrated quantum spin-1/2 systems on
general lattices satisfy an entanglement area law, provided that the
Hamiltonian can be decomposed into nearest-neighbor interaction terms which
have entangled excited states. The ground state manifold can be efficiently
described as the image of a low-dimensional subspace of low Schmidt measure,
under an efficiently contractible tree-tensor network. This structure gives
rise to the possibility of efficiently simulating the complete ground space
(which is in general degenerate). We briefly discuss "non-generic" cases,
including highly degenerate interactions with product eigenbases, using a
relationship to percolation theory. We finally assess the possibility of using
such tree tensor networks to simulate almost frustration-free spin models.Comment: 14 pages, 4 figures, small corrections, added a referenc
Quantum function secret sharing
We propose a quantum function secret sharing scheme in which the communication is exclusively classical. In this primitive, a classical dealer distributes a secret quantum circuit by providing shares to quantum parties. The parties on an input state and a projection , compute values that they then classically communicate back to the dealer, who can then compute using only classical resources. Moreover, the shares do not leak much information about the secret circuit .
Our protocol for quantum secret sharing uses the Cayley path, a tool that has been extensively used to support quantum primacy claims. More concretely, the shares of correspond to randomized version of which are delegated to the quantum parties, and the reconstruction can be done by extrapolation. Our scheme has two limitations, which we prove to be inherent to our techniques: First, our scheme is only secure against single adversaries, and we show that if two parties collude, then they can break its security. Second, the evaluation done by the parties requires exponential time in the number of gates
Stable Quantum-Correlated Many Body States through Engineered Dissipation
Engineered dissipative reservoirs have the potential to steer many-body
quantum systems toward correlated steady states useful for quantum simulation
of high-temperature superconductivity or quantum magnetism. Using up to 49
superconducting qubits, we prepared low-energy states of the transverse-field
Ising model through coupling to dissipative auxiliary qubits. In one dimension,
we observed long-range quantum correlations and a ground-state fidelity of 0.86
for 18 qubits at the critical point. In two dimensions, we found mutual
information that extends beyond nearest neighbors. Lastly, by coupling the
system to auxiliaries emulating reservoirs with different chemical potentials,
we explored transport in the quantum Heisenberg model. Our results establish
engineered dissipation as a scalable alternative to unitary evolution for
preparing entangled many-body states on noisy quantum processors
Epigenetic modifications in cardiovascular disease
Epigenetics represents a phenomenon of altered heritable phenotypic expression of genetic information occurring without changes in DNA sequence. Epigenetic modifications control embryonic development, differentiation and stem cell (re)programming. These modifications can be affected by exogenous stimuli (e.g., diabetic milieu, smoking) and oftentimes culminate in disease initiation. DNA methylation has been studied extensively and represents a well-understood epigenetic mechanism. During this process cytosine residues preceding a guanosine in the DNA sequence are methylated. CpG-islands are short-interspersed DNA sequences with clusters of CG sequences. The abnormal methylation of CpG islands in the promoter region of genes leads to a silencing of genetic information and finally to alteration of biological function. Emerging data suggest that these epigenetic modifications also impact on the development of cardiovascular disease. Histone modifications lead to the modulation of the expression of genetic information through modification of DNA accessibility. In addition, RNA-based mechanisms (e.g., microRNAs and long non-coding RNAs) influence the development of disease. We here outline the recent work pertaining to epigenetic changes in a cardiovascular disease setting
Phase transition in Random Circuit Sampling
Quantum computers hold the promise of executing tasks beyond the capability
of classical computers. Noise competes with coherent evolution and destroys
long-range correlations, making it an outstanding challenge to fully leverage
the computation power of near-term quantum processors. We report Random Circuit
Sampling (RCS) experiments where we identify distinct phases driven by the
interplay between quantum dynamics and noise. Using cross-entropy benchmarking,
we observe phase boundaries which can define the computational complexity of
noisy quantum evolution. We conclude by presenting an RCS experiment with 70
qubits at 24 cycles. We estimate the computational cost against improved
classical methods and demonstrate that our experiment is beyond the
capabilities of existing classical supercomputers
Phase transitions in random circuit sampling.
Undesired coupling to the surrounding environment destroys long-range correlations in quantum processors and hinders coherent evolution in the nominally available computational space. This noise is an outstanding challenge when leveraging the computation power of near-term quantum processors1. It has been shown that benchmarking random circuit sampling with cross-entropy benchmarking can provide an estimate of the effective size of the Hilbert space coherently available2-8. Nevertheless, quantum algorithms' outputs can be trivialized by noise, making them susceptible to classical computation spoofing. Here, by implementing an algorithm for random circuit sampling, we demonstrate experimentally that two phase transitions are observable with cross-entropy benchmarking, which we explain theoretically with a statistical model. The first is a dynamical transition as a function of the number of cycles and is the continuation of the anti-concentration point in the noiseless case. The second is a quantum phase transition controlled by the error per cycle; to identify it analytically and experimentally, we create a weak-link model, which allows us to vary the strength of the noise versus coherent evolution. Furthermore, by presenting a random circuit sampling experiment in the weak-noise phase with 67 qubits at 32 cycles, we demonstrate that the computational cost of our experiment is beyond the capabilities of existing classical supercomputers. Our experimental and theoretical work establishes the existence of transitions to a stable, computationally complex phase that is reachable with current quantum processors
Measurement-induced entanglement and teleportation on a noisy quantum processor
Measurement has a special role in quantum theory: by collapsing the
wavefunction it can enable phenomena such as teleportation and thereby alter
the "arrow of time" that constrains unitary evolution. When integrated in
many-body dynamics, measurements can lead to emergent patterns of quantum
information in space-time that go beyond established paradigms for
characterizing phases, either in or out of equilibrium. On present-day NISQ
processors, the experimental realization of this physics is challenging due to
noise, hardware limitations, and the stochastic nature of quantum measurement.
Here we address each of these experimental challenges and investigate
measurement-induced quantum information phases on up to 70 superconducting
qubits. By leveraging the interchangeability of space and time, we use a
duality mapping, to avoid mid-circuit measurement and access different
manifestations of the underlying phases -- from entanglement scaling to
measurement-induced teleportation -- in a unified way. We obtain finite-size
signatures of a phase transition with a decoding protocol that correlates the
experimental measurement record with classical simulation data. The phases
display sharply different sensitivity to noise, which we exploit to turn an
inherent hardware limitation into a useful diagnostic. Our work demonstrates an
approach to realize measurement-induced physics at scales that are at the
limits of current NISQ processors
- …
