10,838 research outputs found
Water, High-Altitude Condensates, and Possible Methane Depletion in the Atmosphere of the Warm Super-Neptune WASP-107b
The super-Neptune exoplanet WASP-107b is an exciting target for atmosphere
characterization. It has an unusually large atmospheric scale height and a
small, bright host star, raising the possibility of precise constraints on its
current nature and formation history. We report the first atmospheric study of
WASP-107b, a Hubble Space Telescope measurement of its near-infrared
transmission spectrum. We determined the planet's composition with two
techniques: atmospheric retrieval based on the transmission spectrum and
interior structure modeling based on the observed mass and radius. The interior
structure models set a upper limit on the atmospheric metallicity
of solar. The transmission spectrum shows strong evidence for water
absorption ( confidence), and the retrieved water abundance is
consistent with expectations for a solar abundance pattern. The inferred
carbon-to-oxygen ratio is subsolar at confidence, which we
attribute to possible methane depletion in the atmosphere. The spectral
features are smaller than predicted for a cloud-free composition, crossing less
than one scale height. A thick condensate layer at high altitudes (0.1 - 3
mbar) is needed to match the observations. We find that physically motivated
cloud models with moderate sedimentation efficiency () or
hazes with a particle size of 0.3 m reproduce the observed spectral
feature amplitude. Taken together, these findings serve as an illustration of
the diversity and complexity of exoplanet atmospheres. The community can look
forward to more such results with the high precision and wide spectral coverage
afforded by future observing facilities.Comment: 10 pages, 4 figures; accepted to ApJ
Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota
© FEMS 2015. FUNDING EBW is funded by Centre for Genome Enabled Biology and Medicine, University of Aberdeen.Peer reviewedPublisher PD
Recommended from our members
Preliminary Observations on New Images of the Elysium Frozen Sea Deposits from HRSC Mars Express
Abstract not available
Improved simulation of aerosol, cloud, and density measurements by shuttle lidar
Data retrievals are simulated for a Nd:YAG lidar suitable for early flight on the space shuttle. Maximum assumed vertical and horizontal resolutions are 0.1 and 100 km, respectively, in the boundary layer, increasing to 2 and 2000 km in the mesosphere. Aerosol and cloud retrievals are simulated using 1.06 and 0.53 microns wavelengths independently. Error sources include signal measurement, conventional density information, atmospheric transmission, and lidar calibration. By day, tenuous clouds and Saharan and boundary layer aerosols are retrieved at both wavelengths. By night, these constituents are retrieved, plus upper tropospheric, stratospheric, and mesospheric aerosols and noctilucent clouds. Density, temperature, and improved aerosol and cloud retrievals are simulated by combining signals at 0.35, 1.06, and 0.53 microns. Particlate contamination limits the technique to the cloud free upper troposphere and above. Error bars automatically show effect of this contamination, as well as errors in absolute density nonmalization, reference temperature or pressure, and the sources listed above. For nonvolcanic conditions, relative density profiles have rms errors of 0.54 to 2% in the upper troposphere and stratosphere. Temperature profiles have rms errors of 1.2 to 2.5 K and can define the tropopause to 0.5 km and higher wave structures to 1 or 2 km
Developmental contexts and features of elite academy football players: Coach and player perspectives
Player profiling can reap many benefits; through reflective coach-athlete dialogue that produces a profile the athlete has a raised awareness of their own development, while the coach has an opportunity to understand the athlete's viewpoint. In this study, we explored how coaches and players perceived the development features of an elite academy footballer and the contexts in which these features are revealed, in order to develop a player profile to be used for mentoring players. Using a Delphi polling technique, coaches and players experienced a number of 'rounds' of expressing their opinions regarding player development contexts and features, ultimately reduced into a consensus. Players and coaches had differing priorities on the key contexts of player development. These contexts, when they reflect the consensus between players and coaches were heavily dominated by ability within the game and training. Personal, social, school, and lifestyle contexts featured less prominently. Although 'discipline' was frequently mentioned as an important player development feature, coaches and players disagreed on the importance of 'training'
An analytical model for the detection of levitated nanoparticles in optomechanics
Interferometric position detection of levitated particles is crucial for the
centre-of-mass (CM) motion cooling and manipulation of levitated particles. In
combination with balanced detection and feedback cooling, this system has
provided picometer scale position sensitivity, zeptonewton force detection, and
sub-millikelvin CM temperatures. In this article, we develop an analytical
model of this detection system and compare its performance with experimental
results allowing us to explain the presence of spurious frequencies in the
spectra
Obliquity Constraints on an Extrasolar Planetary-Mass Companion
We place the first constraints on the obliquity of a planetary-mass companion outside of the solar system. Our target is the directly imaged system 2MASS J01225093–2439505 (2M0122), which consists of a 120 Myr 0.4 M⊙ star hosting a 12–27 M_J companion at 50 au. We constrain all three of the system's angular-momentum vectors: how the companion spin axis, the stellar spin axis, and the orbit normal are inclined relative to our line of sight. To accomplish this, we measure projected rotation rates (v sin i) for both the star and the companion using new near-infrared high-resolution spectra with NIRSPEC at Keck Observatory. We combine these with a new stellar photometric rotation period from TESS and a published companion rotation period from Hubble Space Telescope to obtain spin-axis inclinations for both objects. We also fitted multiple epochs of astrometry, including a new observation with NIRC2/Keck, to measure 2M0122b's orbital inclination. The three line-of-sight inclinations place limits on the true de-projected companion obliquity and stellar obliquity. We find that while the stellar obliquity marginally prefers alignment, the companion obliquity tentatively favors misalignment. We evaluate possible origin scenarios. While collisions, secular spin–orbit resonances, and Kozai–Lidov oscillations are unlikely, formation by gravitational instability in a gravito-turbulent disk—the scenario favored for brown dwarf companions to stars—appears promising
African Higher Education: Researching Absences, Equalities and Aspirations
No description supplie
- …
