255 research outputs found

    Azurophilic inclusions in plasma cells

    Get PDF
    We report a 45-year-old man with complaints of chest pain and weight loss who was referred for a bone marrow/trephine procedure to the Aga Khan University Hospital. Bone marrow examination showed plasmacytosis of 95% with plasma cells containing coarse Auer rod-like azurophilic inclusions, which failed to stain positively with Sudan Black B or periodic acid Schiff stain. These inclusions have rarely been previously reported as they are more significant morphologically rather than having a prognostic value

    Imaging of X-Ray-Excited Emissions from Quantum Dots and Biological Tissue in Whole Mouse

    Get PDF
    © The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Optical imaging in clinical and preclinical settings can provide a wealth of biological information, particularly when coupled with targetted nanoparticles, but optical scattering and absorption limit the depth and resolution in both animal and human subjects. Two new hybrid approaches are presented, using the penetrating power of X-rays to increase the depth of optical imaging. Foremost, we demonstrate the excitation by X-rays of quantum-dots (QD) emitting in the near-infrared (NIR), using a clinical X-ray system to map the distribution of QDs at depth in whole mouse. We elicit a clear, spatially-resolved NIR signal from deep organs (brain, liver and kidney) with short (1 second) exposures and tolerable radiation doses that will permit future in vivo applications. Furthermore, X-ray-excited endogenous emission is also detected from whole mouse. The use of keV X-rays to excite emission from QDs and tissue represent novel biomedical imaging technologies, and exploit emerging QDs as optical probes for spatial-temporal molecular imaging at greater depth than previously possible.Peer reviewe

    Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.

    Get PDF
    We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Hemoglobin E syndromes in Pakistani population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemoglobin E is an important hemoglobin variant with a worldwide distribution. A number of hemoglobinopathies have been reported from Pakistan. However a comprehensive description of hemoglobin E syndromes for the country was never made. This study aimed to describe various hemoglobin E disorders based on hematological parameters and chromatography. The sub-aim was to characterize hemoglobin E at molecular level.</p> <p>Methods</p> <p>This was a hospital based study conducted prospectively for a period of one year extending from January 1 to December 31, 2008. EDTA blood samples were analyzed for completed blood counts and hemoglobin variants through automated hematology analyzer and Bio-Rad beta thalassaemia short program respectively. Six samples were randomly selected to characterize HbE at molecular level through RFLP-PCR utilizing <it>Mnl</it>I restriction enzyme.</p> <p>Results</p> <p>During the study period, 11403 chromatograms were analyzed and Hb E was detected in 41 (or 0.36%) samples. Different hemoglobin E syndromes identified were HbEA (n = 20 or 49%), HbE/β-thalassemia (n = 14 or 34%), HbEE (n = 6 or 15%) and HbE/HbS (n = 1 or 2%). Compound heterozygosity for HbE and beta thalassaemia was found to be the most severely affected phenotype. RFLP-PCR utilizing <it>Mnl</it>I successfully characterized HbE at molecular level in six randomly selected samples.</p> <p>Conclusions</p> <p>Various HbE phenotypes are prevalent in Pakistan with HbEA and HbE/β thalassaemia representing the most common syndromes. Chromatography cannot only successfully identify hemoglobin E but also assist in further characterization into its phenotype including compound heterozygosity. Definitive diagnosis of HbE can easily be achieved through RFLP-PCR.</p
    corecore