30,119 research outputs found
Analytical Approximations to Galaxy Clustering
We discuss some recent progress in constructing analytic approximations to
the galaxy clustering. We show that successful models can be constructed for
the clustering of both dark matter and dark matter haloes. Our understanding of
galaxy clustering and galaxy biasing can be greatly enhanced by these models.Comment: 10 pages, Latex, crckapb.sty, figure included, to appear in the
proceedings of Ringberg Workshop on Large-Scale Structure (ed. D. Hamilton;
Kluwer Academic Publishers
Experimental investigation on thermal comfort model between local thermal sensation and overall thermal sensation
To study the human local and overall thermal sensations, a series of experiments under various conditions were carried out in a climate control chamber. The adopted analysis method considered the effect of the weight coefficient of local average skin temperature and density of the cold receptors’ distribution in different local body areas. The results demonstrated that the thermal sensation of head, chest, back and hands is warmer than overall thermal sensation. The mean thermal sensation votes of those local areas were more densely distributed. In addition, the thermal sensation of arms, tight and calf was colder than the overall thermal sensation, which pronounced that thermal sensation votes were more dispersed. The thermal sensation of chest and back had a strong linear correlation with overall thermal sensation. Considering the actual scope of air-conditioning regulation, the human body was classified into three local parts: a) head, b) upper part of body and c) lower part of body. The prediction model of both the three-part thermal sensation and overall thermal sensation was developed. Weight coefficients were 0.21, 0.60 and 0.19 respectively. The model provides scientist basis for guiding the sage installation place of the personal ventilation system to achieve efficient energy use
Calculations of the spectral nature of the microwave emission from soils
The brightness temperatures for a set of soil profiles observed at USDA facilities in Arizona and Georgia were calculated at the wavelengths of 2.8, 6, 11, 21, and 49 cm using a coherent radiative transfer model. The soil moisture sampling depth is found to be a function of wavelength and is in the range 0.06 to 0.1 of a wavelength. The thermal sampling depth also depends on wavelength and is approximately equal to one wavelength at dry soil condition and 0.1 - 0.5 wavelengths at wet soil conditions. Calculated values of emissivity show strong diurnal variations when the soils are wet, while there is little diurnal change when the soil is dry. The soil moistures within the four depth intervals of 0-2, 0-5, 0-9, and 0-15 cm were parameterized as function of the calculated emissivity and brightness temperature. Best-fit parameters and correlation coefficients are presented for five wavelengths. Interrelationships among the effective temperature, surface temperature, and emissivity are displayed
A Simple Method for Computing the Non-Linear Mass Correlation Function with Implications for Stable Clustering
We propose a simple and accurate method for computing analytically the mass
correlation function for cold dark matter and scale-free models that fits
N-body simulations over a range that extends from the linear to the strongly
non-linear regime. The method, based on the dynamical evolution of the pair
conservation equation, relies on a universal relation between the pair-wise
velocity and the smoothed correlation function valid for high and low density
models, as derived empirically from N-body simulations. An intriguing
alternative relation, based on the stable-clustering hypothesis, predicts a
power-law behavior of the mass correlation function that disagrees with N-body
simulations but conforms well to the observed galaxy correlation function if
negligible bias is assumed. The method is a useful tool for rapidly exploring a
wide span of models and, at the same time, raises new questions about large
scale structure formation.Comment: 10 pages, 3 figure
The Pairwise Peculiar Velocity Dispersion of Galaxies: Effects of the Infall
We study the reliability of the reconstruction method which uses a modelling
of the redshift distortions of the two-point correlation function to estimate
the pairwise peculiar velocity dispersion of galaxies. In particular, the
dependence of this quantity on different models for the infall velocity is
examined for the Las Campanas Redshift Survey. We make extensive use of
numerical simulations and of mock catalogs derived from them to discuss the
effect of a self-similar infall model, of zero infall, and of the real infall
taken from the simulation. The implications for two recent discrepant
determinations of the pairwise velocity dispersion for this survey are
discussed.Comment: minor changes in the discussion; accepted for publication in ApJ; 8
pages with 2 figures include
Calibrating the Galaxy Halo - Black Hole Relation Based on the Clustering of Quasars
The observed number counts of quasars may be explained either by long-lived
activity within rare massive hosts, or by short-lived activity within smaller,
more common hosts. It has been argued that quasar lifetimes may therefore be
inferred from their clustering length, which determines the typical mass of the
quasar host. Here we point out that the relationship between the mass of the
black-hole and the circular velocity of its host dark-matter halo is more
fundamental to the determination of the clustering length. In particular, the
clustering length observed in the 2dF quasar redshift survey is consistent with
the galactic halo - black-hole relation observed in local galaxies, provided
that quasars shine at ~10-100% of their Eddington luminosity. The slow
evolution of the clustering length with redshift inferred in the 2dF quasar
survey favors a black-hole mass whose redshift-independent scaling is with halo
circular velocity, rather than halo mass. These results are independent from
observations of the number counts of bright quasars which may be used to
determine the quasar lifetime and its dependence on redshift. We show that if
quasar activity results from galaxy mergers, then the number counts of quasars
imply an episodic quasar lifetime that is set by the dynamical time of the host
galaxy rather than by the Salpeter time. Our results imply that as the redshift
increases, the central black-holes comprise a larger fraction of their host
galaxy mass and the quasar lifetime gets shorter.Comment: 10 pages, 5 figures. Submitted to Ap
Albedo and flux extinction coefficient of impure snow for diffuse shortwave radiation
Impurities enter a snowpack as a result of fallout of scavenging by falling snow crystals. Albedo and flux extinction coefficient of soot contaminated snowcovers were studied using a two stream approximation of the radiative transfer equation. The effect of soot was calculated by two methods: independent scattering by ice grains and impurities and average refractive index for ice grains. Both methods predict a qualitatively similar effect of soot; the albedo is decreased and the extinction coefficient is increased compared to that for pure snow in the visible region; the infrared properties are largely unaffected. Quantitatively, however, the effect of soot is more pronounced in the average refractive index method. Soot contamination provides a qualitative explanation for several snow observations
Scaling properties of the redshift power spectrum: theoretical models
We report the results of an analysis of the redshift power spectrum
in three typical Cold Dark Matter (CDM) cosmological models, where
is the cosine of the angle between the wave vector and the line-of-sight.
Two distinct biased tracers derived from the primordial density peaks of
Bardeen et al. and the cluster-underweight model of Jing, Mo, & B\"orner are
considered in addition to the pure dark matter models. Based on a large set of
high resolution simulations, we have measured the redshift power spectrum for
the three tracers from the linear to the nonlinear regime. We investigate the
validity of the relation - guessed from linear theory - in the nonlinear regime
where
is the real space power spectrum, and equals . The
damping function which should generally depend on , , and
, is found to be a function of only one variable
. This scaling behavior extends into the nonlinear regime,
while can be accurately expressed as a Lorentz function - well known from
linear theory - for values . The difference between
and the pairwise velocity dispersion defined by the 3-D peculiar velocity of
the simulations (taking ) is about 15%. Therefore is a
good indicator of the pairwise velocity dispersion. The exact functional form
of depends on the cosmological model and on the bias scheme. We have given
an accurate fitting formula for the functional form of for the models
studied.Comment: accepted for publication in ApJ;24 pages with 7 figures include
- …
