392 research outputs found
Quantitative Analysis of DoS Attacks and Client Puzzles in IoT Systems
Denial of Service (DoS) attacks constitute a major security threat to today's
Internet. This challenge is especially pertinent to the Internet of Things
(IoT) as devices have less computing power, memory and security mechanisms to
mitigate DoS attacks. This paper presents a model that mimics the unique
characteristics of a network of IoT devices, including components of the system
implementing `Crypto Puzzles' - a DoS mitigation technique. We created an
imitation of a DoS attack on the system, and conducted a quantitative analysis
to simulate the impact such an attack may potentially exert upon the system,
assessing the trade off between security and throughput in the IoT system. We
model this through stochastic model checking in PRISM and provide evidence that
supports this as a valuable method to compare the efficiency of different
implementations of IoT systems, exemplified by a case study
Josephson Vortex States in Intermediate Fields
Motivated by recent resistance data in high superconductors in fields
{\it parallel} to the CuO layers, we address two issues on the Josephson-vortex
phase diagram, the appearances of structural transitions on the observed first
order transition (FOT) curve in intermediate fields and of a lower critical
point of the FOT line. It is found that some rotated pinned solids are more
stable than the ordinary rhombic pinned solids with vacant interlayer spacings
and that, due to the vertical portion in higher fields of the FOT line, the FOT
tends to be destroyed by creating a lower critical point.Comment: 12 pages, 3 figures. To appear in J.Phys.Soc.Jpn. 71, No.2 (February,
2002
Solidification of Al-Sn-Cu based immiscible alloys under intense shearing
The official published version of the Article can be accessed from the link below - Copyright @ 2009 The Minerals, Metals & Materials Society and ASM InternationalThe growing importance of Al-Sn based alloys as materials for engineering applications
necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform
dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.This work is funded by the EPSRC and
DT
Assessment techniques, database design and software facilities for thermodynamics and diffusion
The purpose of this article is to give a set of recommendations to producers of assessed thermodynamic data, who may be involved in either the critical evaluation of limited chemical systems or the creation and dissemination of larger thermodynamic databases. Also, it is hoped that reviewers and editors of scientific publications in this field will find some of the information useful. Good practice in the assessment process is essential, particularly as datasets from many different sources may be combined together into a single database. With this in mind, we highlight some problems that can arise during the assessment process and we propose a quality assurance procedure. It is worth mentioning at this point, that the provision of reliable assessed thermodynamic data relies heavily on the availability of high quality experimental information. The different software packages for thermodynamics and diffusion are described here only briefly
Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy, and spatial-temporal correlations
Understanding the mechanisms of efficient and robust energy transfer in
light-harvesting systems provides new insights for the optimal design of
artificial systems. In this paper, we use the Fenna-Matthews-Olson (FMO)
protein complex and phycocyanin 645 (PC 645) to explore the general dependence
on physical parameters that help maximize the efficiency and maintain its
stability. With the Haken-Strobl model, the maximal energy transfer efficiency
(ETE) is achieved under an intermediate optimal value of dephasing rate. To
avoid the infinite temperature assumption in the Haken-Strobl model and the
failure of the Redfield equation in predicting the Forster rate behavior, we
use the generalized Bloch-Redfield (GBR) equation approach to correctly
describe dissipative exciton dynamics and find that maximal ETE can be achieved
under various physical conditions, including temperature, reorganization
energy, and spatial-temporal correlations in noise. We also identify regimes of
reorganization energy where the ETE changes monotonically with temperature or
spatial correlation and therefore cannot be optimized with respect to these two
variables
Cystatin C and lactoferrin concentrations in biological fluids as possible prognostic factors in eye tumor development
Objectives. To investigate the possible role of cystatin C in eye biological fluids locally and in serum and lactoferrin revealing anti-tumor activity in eye tumor development. Background. The increased number of eye tumors was registered recently not only in the countries with high insolation, but also in the northern countries including Russia (11 cases per million of population). Search for new biological markers is important for diagnosis and prognosis in eye tumors. Cystatin C, an endogenous inhibitor of cysteine proteases, plays an important protective role in several tumors. Lactoferrin was shown to express anti-tumor and antiviral activities. It was hypothesized that cystatin C and lactoferrin could serve as possible biomarkers in the diagnosis of malignant and benign eye tumors. Study design. A total of 54 patients with choroidal melanoma and benign eye tumors were examined (part of them undergoing surgical treatment). Serum, tear fluid and intraocular fluid samples obtained from the anterior chamber of eyes in patients with choroidal melanoma were studied. Methods. Cystatin C concentration in serum and eye biological fluids was measured by commercial ELISA kits for human (BioVendor, Czechia); lactoferrin concentration – by Lactoferrin-strip D 4106 ELISA test systems (Vector-BEST, Novosibirsk Region, Russia). Results. Cystatin C concentration in serum of healthy persons was significantly higher as compared to tear and intraocular fluids. In patients with choroidal melanoma, increased cystatin C concentration was similar in tear fluid of both the eyes. Lactoferrin level in tear fluid of healthy persons was significantly higher than its serum level. Significantly increased lactoferrin concentration in tear fluid was noted in patients with benign and malignant eye tumors. Conclusion. Increased level of cystatin C in tear fluid seems to be a possible diagnostic factor in the eye tumors studied. However, it does not allow us to differentiate between malignant and benign eye tumors. Similar changes were noted for lactoferrin in tear fluid
Josephson vortices and solitons inside pancake vortex lattice in layered superconductors
In very anisotropic layered superconductors a tilted magnetic field generates
crossing vortex lattices of pancake and Josephson vortices (JVs). We study the
properties of an isolated JV in the lattice of pancake vortices. JV induces
deformations in the pancake vortex crystal, which, in turn, substantially
modify the JV structure. The phase field of the JV is composed of two types of
phase deformations: the regular phase and vortex phase. The phase deformations
with smaller stiffness dominate. The contribution from the vortex phase
smoothly takes over with increasing magnetic field. We find that the structure
of the cores experiences a smooth yet qualitative evolution with decrease of
the anisotropy. At large anisotropies pancakes have only small deformations
with respect to position of the ideal crystal while at smaller anisotropies the
pancake stacks in the central row smoothly transfer between the neighboring
lattice positions forming a solitonlike structure. We also find that even at
high anisotropies pancake vortices strongly pin JVs and strongly increase their
viscous friction.Comment: 22 pages, 11 figures, to appear in Phys. Rev.
Phase Transitions in Isolated Vortex Chains
In very anisotropic layered superconductors (e.g. BiSrCaCuO)
a tilted magnetic field can penetrate as two co-existing lattices of vortices
parallel and perpendicular to the layers. At low out-of-plane fields the
perpendicular vortices form a set of isolated vortex chains, which have
recently been observed in detail with scanning Hall-probe measurements. We
present calculations that show a very delicate stability of this isolated-chain
state. As the vortex density increases along the chain there is a first-order
transition to a buckled chain, and then the chain will expel vortices in a
continuous transition to a composite-chain state. At low densities there is an
instability towards clustering, due to a long-range attraction between the
vortices on the chain, and at very low densities it becomes energetically
favorable to form a tilted chain, which may explain the sudden disappearance of
vortices along the chains seen in recent experiments.Comment: 9 pages, 10 figure
Comments on the article Opial inequality in q-Calculus
We give corrections concerned with the proofs of the theorems from the paper
Opial inequality in q-Calculus, where integral inequalities of the q-Opial type
were established
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
- …
