113 research outputs found

    Hypomineralized Second Primary Molars as Predictor of Molar Incisor Hypomineralization

    Get PDF
    Molar incisor hypomineralization (MIH) is a developmental defect of dental enamel that shares features with hypomineralized second primary molars (HSPM). Prior to permanent tooth eruption, second primary molars could have predictive value for permanent molar and incisor hypomineralization. To assess this possible relationship, a cross-sectional study was conducted in a sample of 414 children aged 8 and 9 years from the INMA cohort in Valencia (Spain). A calibrated examiner (linear-weighted Kappa 0.83) performed the intraoral examinations at the University of Valencia between November 2013 and 2014, applying the diagnostic criteria for MIH and HSPM adopted by the European Academy of Paediatric Dentistry. 100 children (24.2%) presented MIH and 60 (14.5%) presented HSPM. Cooccurrence of the two defects was observed in 11.1% of the children examined. The positive predictive value was 76.7% (63.9-86.6) and the negative predictive value 84.7% (80.6-88.3). The positive likelihood ratio (S/1-E) was 10.3 (5.9-17.9) and the negative likelihood ratio (1-S/E) 0.57 (0.47-0.68). The odds ratio was 18.2 (9.39-35.48). It was concluded that while the presence of HSPM can be considered a predictor of MIH, indicating the need for monitoring and control, the absence of this defect in primary dentition does not rule out the appearance of MIH

    The Microfloral Analysis of Secondary Caries Biofilm around Class I and Class II Composite and Amalgam Fillings

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secondary caries is responsible for 60 percent of all replacement restorations in the typical dental practice. The diversity of the bacterial sources and the different types of filling materials could play a role in secondary caries. The aim of this study was to determine and compare the microbial spectrum of secondary caries biofilms around amalgam and composite resin restorations.</p> <p>Methods</p> <p>Clinical samples were collected from freshly extracted teeth diagnosed with clinical secondary caries. Samples were categorized into four groups according to the types of restoration materials and the classification of the cavity. Biofilms were harvested from the tooth-restoration interface using a dental explorer and after dilution were incubated on special agars. The bacteria were identified using the biochemical appraisal system. Statistical calculations were carried out using SPSS11.5 software to analyze the prevalence of the bacteria involved in secondary caries.</p> <p>Results</p> <p>Samples from a total of four groups were collected: two groups were collected from amalgam restorations, each had 21 samples from both Class I and Class II caries; and the other two groups were from composite resin restorations, each had 13 samples from both class I and class II caries. Our results showed: (1) Anaerobic species were dominant in both restoration materials. (2) In terms of the types of individual bacteria, no significant differences were found among the four groups according to the geometric mean of the detected bacteria (P > 0.05). However, there were significant differences among the detected bacteria within each group (P < 0.05). The composition of each bacterium had no statistical difference among the four groups (P > 0.05), but showed significant differences among the detected bacteria in each group (P < 0.05). (3) Among the four groups, there were no significant differences for the detection rate of each bacterium (P > 0.05), however, the detection rate of each bacterium within each group was statistically different among the detected bacteria (P < 0.05).</p> <p>Conclusions</p> <p>The proportion of obligatory anaerobic species was much greater than the facultative anaerobic species in the biofilm of secondary caries. Statistically, the materials of restoration and the location of secondary caries did not show any significant effects on the composition of the microflora.</p

    The influence of cadmium stress on the content of mineral nutrients and metal-binding proteins in arabidopsis halleri

    Get PDF
    We investigated the influence of cadmium stress on zinc hyperaccumulation, mineral nutrient uptake, and the content of metal-binding proteins in Arabidopsis halleri. The experiments were carried out using plants subjected to long-term cadmium exposure (40 days) in the concentrations of 45 and 225 μM Cd2+. Inductively coupled plasma-mass spectrometry, size exclusion chromatography coupled with plasma-mass spectrometry, and laser ablation inductively coupled plasma-mass spectrometry used for ablation of polyacylamide gels were employed to assess the content of investigated elements in plants as well as to identify metal-binding proteins. We found that A. halleri is able to translocate cadmium to the aerial parts in high amounts (translocation index >1). We showed that Zn content in plants decreased significantly with the increase of cadmium content in the growth medium. Different positive and negative correlations between Cd content and mineral nutrients were evidenced by our study. We identified more than ten low-molecular-weight (<100 kDa) Cd-binding proteins in Cd-treated plants. These proteins are unlikely to be phytochelatins or metallothioneins. We hypothesize that low-molecular-weight Cd-binding proteins can be involved in cadmium resistance in A. halleri

    Influence of dentin and enamel pretreatment with acidic sulfur compounds on adhesive performance

    Full text link
    OBJECTIVE: This study tested the potential hampering effects of acidic sulfur compounds (ASC) containing hydroxybenzene sulfonic acid, hydroxymethoxybenzene sulfonic acid, and sulfuric acid, prior to self-etch and etch-and-rinse bonding procedures on enamel and dentin. According to the manufacturer, ASC should be applied after cavity preparation and prior to application of a primer in order to reduce the remaining biofilm in the preparation cavity. Despite promoted marketing, data on the investigated liquid are almost completely lacking. MATERIAL AND METHODS: One hundred and fifty-two extracted mandibular bovine incisors were embedded and polished to expose either enamel (E) or dentin (D). Then, specimens were randomly divided and conditioned as follows (n = 12/group): ASC and consecutive phosphoric acid application (E1/D1), ASC (E2/D2; E5/D5), phosphoric acid (E3/D3), and no conditioning (E4/D4; E6/D6). Groups were then treated with either Optibond FL(®) (etch-and-rinse; 1-4) or Clearfil SE Bond(®) (self-etch; 5-6). Hollow acrylic cylinders were bonded with a hybrid composite resin (Filtek Supreme XTE®) to the specimens, and the shear bond strength was measured (1 mm/min). In addition, failure types were assessed. Descriptive statistics and statistical analyses were performed with one-way ANOVA followed by the Scheffé post hoc test. RESULTS: For enamel, the highest shear bond strength values were obtained applying routine bonding procedures (23.5 ± 5.6 MPa for etch-and-rinse and 26.0 ± 6.0 MPa for self-etch, respectively). In contrast, dentin pretreatment with a combination of ASC and phosphoric acid led to the highest shear bond values (22.8 ± 4.1 MPa). CONCLUSION: This study shows that ASC prior to dental restoration placement cannot be recommended for etch-and-rinse procedures on enamel but is appropriate for dentin without interfering with routine bonding procedures. CLINICAL RELEVANCE: The application of acidic sulfur compounds prior to adhesive restoration placement should be restricted to dentin only as it may negatively influence shear bond strength on sound enamel
    corecore